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Abstract. Nucleation of intermediate phase during the reactive diffusion in the binary diffusion couple due to fluctuation, which 
takes into account the optimized redistribution of composition in the diffusion zone, is considered in details. The nucleation mode, 
corresponding to unlimited redistribution in the concentration gradient direction outside the newborn nucleus as well as inside, is 
presented. The concentration profiles corresponding to the critical nuclei of the new phase are found, as well as the nucleation 
barriers depending on the concentration gradient and system parameters. Analysis of transversal and polymorphous modes of 
nucleation in binary diffusion couple A-B has been modified with taking into account the gradient term in the free energy density. 
For all modified modes of nucleation formulas of dependencies of the Gibbs free energy on volume, shape and concentration gradient 
have been obtained. 

1. Introduction 

Reactive diffusion that is diffusion with nucleation and growth of intermediate phase, takes special significant part in 
manufacture of composite materials and protective coating. It is known that nucleation during the reactive diffusion may 
be considered as separation of the inhomogeneous solid solutions. Nucleus of new phase may form in diffusion zone – in 
the concentration gradient field changing in time. Corresponding modification of the classic nucleation theory has been 
partly made by research groups: Desre P. J. (France), Gusak A. M. (Ukraine). However, it still stays imperfect. The theory 
of critical gradient is used by different experimental groups P. Gas (France), J. Perepezko (USA), K. Barmak (USA), G. 
Schmitz (Germany) and others for analysis and forecasts of new phase layers appearance in binary couples: Ni-Zr, Co-Al, 
AL-Ni, Ag-Cu, Ti-AL, Nb-AL, Ti-Si. Thus one needs the developing of such modified method which will be generalize 
the nucleation theory in the changing concentration gradient field. 

The recent achievements in the field of solid state reactions, especially, the tomographic atom-probe method (TAP), 
the different methods of solid state amorphazing reactions (SSAR) made the problem of intermediate phase nucleation 
in the concentration gradient field an urgent issue. The thermodynamic constraints on the nucleation are the main 
reasons of the phase competition and of formation of metastable phases instead of stable intermetallics. It is known that 
the thermodynamic and kinetic constraints on the nucleation are connected first of all with the narrow space domain of 
possible nucleation, with the sharp concentration gradient [1-4]. 

The detailed thermodynamic analysis of the nucleation in the concentration gradient has been made independently 
by different authors [5-10]. The above mentioned approaches were based on the different specific assumptions: frozen 
diffusion [5], unlimited transversal diffusion inside every slice perpendicular to the concentration gradient direction 
( C∇  direction) [6], total mixing inside a new-born nucleus [7]. There were also different assumptions about the 
nucleus shape: sphere [5], cube [6], ellipsoid [9], arbitrary figure of rotation with optimized shape [9]. All [5,6,8-10] 
models gave the same important result - the nucleation of intermediate phase is thermodynamically forbidden if the 
concentration gradient exceeds certain critical value (figure 1). And nucleation barrier decreases when the concentration 
gradient decreases. Because of this result in these two modes we call them prohibiting modes. The theoretical 
estimation for real systems Ni-Zn, Ni-Al gives this value about 710 - 910 1−m . 
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Fig. 1. Qualitative dependence of the nucleation barrier value ∆GCR on concentration gradient ∇C in the parent 
phase for prohibiting transversal and polymorphous modes. ∇Ccrit – critical value of the concentration gradient. 

In paper [11] we showed that, strictly speaking, this result is not true. To verify this we considered one more 
nucleation mode - unlimited redistribution (in the C∇  - direction). It means that there is no diffusion constraints on 
nucleation in this direction. The principal supposition has been made in [11] by considering the unlimited 
redistribution in the C∇  - direction outside the new-born nucleus as well as inside it. This assumption is close to 
consideration of the similar total mixing mode [7], where the diffusion is taken into account only inside a new-born 
nucleus. We will show that the account of redistribution both inside and outside will give another result. More over we 
will take into account the gradient (Cahn J. W. - Hilliard J. E.) terms in the free energy density making impossible the 
abrupt changes of concentration at the interfaces. In mathematical sense we will generalize the Khachaturyan’s 
approach to the nucleation [12], on the case of concentration gradient in the parent metastable phase. 

In section 2 the fundamentals of the new model are considered. The variation problem for the saddle point of the 
Gibbs free energy surface is formulated and reduced to the system of Euler-equations for the concentration dependence 
outside and inside the critical nucleus. The solution of above mentioned problem is presented and results of such 
approach are analyzed. 

In section 3 we will consider the polymorphous mode and transversal diffusion approach to present model. We will 
modify these two modes with taking into account the gradient term in the free energy density. For all modified modes of 
nucleation formulas of dependencies of the Gibbs free energy changing from volume, form and concentration gradient 
will be obtained. 

In section 4 some conclusions about all three modes will be discussed. 

2. Allowing longitudinal nucleation mode. 

As an example let’s consider the diffusion couple Al-Ni. TAM of the initial stages of reactive diffusion due to high 
spatial resolution (≈3 angstrom in the concentration gradient direction) shows that in Al-Ni system there exists very thin 
(≈2 нм) metastable phase of 60 at. % Al which disappears on a later stage of nucleation [4]. Hereby one makes 
consecutive annealing of diffusion couple Al/Ni at 200˚С, 250˚С and 400˚С during the different times (5, 30 min). The 
significant result of this experiment is that the later from the metastable Al3Ni2 phase of the inhomogeneous solution the 
new intermediate phase (more advantageous but metastable as well) is educed. And preliminary smoothing out of the 
concentration profile no one observed. It means that the sharp initial concentration gradient in these two cases of 
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nucleation of the new phases may stimulate the nucleation contrary to results of theoretical works [5,6,9]. 
We are sure that during the transformation one must account the possibility of redistribution of a component in the 

all alloys and significant influence of the gradient on the initial stage of reactive diffusion. 
On the one side, from the beginning the parent phase is spatial inhomogeneous so that one needs to determine the 

nucleus parameters with taking into account inhomogeneity of the concentration profile and nonsymmetrical form of the 
nucleus, which in turn affect driving force of transformation. 

On the other side, if there exists the concentration inhomogeneities in the solution then the density of Gibbs free 
energy in any spatial point depends on not only the concentration value С(r) and on spatial derivatives of С(r) 
characterizing the nonlocal interaction of concentration inhomogeneities (Cahn J. W. and Hilliard J. E. method) [11]. 

The aim of this chapter is generalizing the Cahn J. W. and Hilliard J. E. method on the case of intermediate phase 
nucleation in the existing initial concentration gradient field changing in time. 

2.1. Model and method 

Let’s solve the rigorous variational problem for driving force of transformation as a functional of arbitrary 
concentration profiles С(r). The nucleus of the intermediate phase is assumed to be a cylindrical (“tablet”) with the 
effective thickness h=2XR and radius R (figure 2). 

 
Fig.2. Scheme of the new intermediate phase nucleus form (gradient in X direction) with sharp boundary of 2R 
diameter across the gradient and diffuse boundary between the components A-B along the X-axis: h=2XR – 
effective thickness of the nucleus (height of cylinder) determining from the variation procedure [11]. 

The variation procedure gives the optimal concentration profile С(Х) (farther else С(Х,R) at fixed radius R of 
cylindrical nucleus) and optimal form at once. 

Let’s assume the fast diffusion transformation existing with unlimited redistribution in the concentration gradient 
direction (X-axis) at the initial stage with next reconstruction of a lattice. Such mode of nucleation in the concentration 
gradient with unlimited redistribution in the concentration gradient direction will be called longitudinal nucleation 
mode. 

Consider the nucleation of intermediate phase described by parabolic free energy density dependence (figure 3): 
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on the basis of the metastable parent phase described by similar parabolic dependence: 
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According to the Khachaturyan approach to the problem of nucleation, there is no composition jumps at the nucleus 
boundaries. These very boundaries are determined as the places with compositions at which the Gibbs energy densities 
of the new and old phases are equal:  
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Thus the size of the nucleus is determined by the concentration interval ( CL , CR ), where the intermediate phase is 
advantageous: 
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Fig. 3. Gibbs free energy density (energy per unite of volume) dependence on concentration for parent phase 
(old) and intermediate phase (new). 

The parent solid solution is nonhomogeneous and is formed by interdiffusion in the diffusion couple A-B before 
new phase formation. The result of this previous diffusion stage is the error function concentration dependence  
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where D - is an interdiffusion coefficient in parent phase (assumed to be constant), t - is annealing time before the 

attempt of nucleation. The concentration gradient at X=0: 
DtLdX

dC
π2
11

0

== . As one can see from eqs. (1-3) the 

energy density is a function of the concentration, which is in turn a function of the coordinates. So this fact originates to 
Gibbs free energy dependence on nucleus geometry and spatial distribution of the concentration (concentration 
gradient) in it. The initial (before nucleation) concentration gradient determines the value of the nucleation barrier 
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∆GCR. Our aim is to find the dependence 
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The formation of the nucleus leads to the following change of free energy: 
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Here )(0 XC  - is an initial profile (3), )(XC  - new profile, which is a result of redistribution in the nucleation 

process. Function g(C(X)) is equal to gnew(C(X)) if RL CCC <<  and is equal to gold(C(X)) outside this interval. β and 
βo- are parameters describing nonlocal interactions according to Cahn-Hilliard theory, σ  - surface energy for the side 
surface of cylinder (constant in our case). In eq. (4) the surface energy for the cylinder face is not introduced since the 
surface effects for this continuous boundaries are taken into account by the gradient term β. β and βo values depend on 
interatomic interaction potentials and are functions of concentration, but in our model they are assumed to be constant. 
One may estimate them by such formula: βо≅β≅Zna2Emix, where a- lattice parameter, Z - coordination number, Emix - 
two-particle energy of interaction (mixing energy), n – number of atoms per unite of volume. 

Let’s use the quasi one-dimensionality of our model. We will fix the radius R, then will optimize the profile and will 
determine the thickness h=2XR and after that we will change the radius once more. For every fixed R we will find the 
driving force corresponding to the optimal profile. The cross point on the ∆G(R) dependence gives the nucleation 
barrier. So we will find the critical radius RCR, the critical thickness h=2XR, optimal concentration profile СCR(Х,RCR) in 
the critical nucleus and in the parent phase, volume RCRCR XRV 22 2 ⋅= π  and nucleation barrier ∆GCR. 

In fact the integral in the eq. (4) falls into three intervals: ∫
∞−
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, ∫
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 and ∫
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RX

, where XL and XR are determined by 

the conditions: C(XL)=CL, C(XR)=CR. For simplicity we will consider the symmetric case when the minima of both 
g(C) functions coincide with respect to concentration C(X=0)=CO and we will limit ourselves with symmetrical case, 
when the center on new-born nucleus coincides with the position of the initial interface X=0. Then XL=-XR. The 
expression (4) for the change of the Gibbs free energy is a functional of the arbitrary concentration dependences C(X). 
If the nucleation is possible the surface of ∆G in the multidimensional configuration space must determine the critical 
nucleus. The configuration space includes the possible concentration profile C(X,R), the possible radius R of the tablet. 

Obviously, in order to find the critical parameters, one should solve the variational problem δ∆G=0, taking into 
account the conservation of matter.According to the Lagrange method one should find extreme of the functional: 
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µ - Lagrange coefficient, determined from the boundary conditions. Last equation takes the symmetry into account. 
The transition from variation principle to Euler-equation is not trivial here since the expression (4) for ∆G contains 

the variable XR, which is determined by the form of C(X). To obtain the standard Euler-equation one needs to represent 
the variation in the integral form [11]. 

The usual variation procedure for the functional F provide the set of Euler-Lagrange equations: 
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The boundary conditions are: C X R CI ( , )= =0 0 , ),(),( RXXCCRXXC RIIRRI ==== , 
C XII ( )→ =∞ 1 . We demand the solution to be smooth (with continuous first derivatives) at the boundary X=XR: 

)()( RIIRI XXCXXC =′==′ . The position of the boundary itself is found from above mentioned 
boundary conditions. 

2.2. Solution of the boundary problem 

The set of equations (5-6) have no analytical solution because of essential nonlinearity in eq. (5). To obtain 
semianalytical solution, assume the derivative ′C X

I
( )  inside the nucleus to be approximately constant: 
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L
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where the parameter L  - is unknown and must be determined from the condition of self-consistency. Using eq. (7) 
one can easily obtain the analytical solution of the eqs. (5-6): 
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Substituting this solution into the eq. (7) one obtains the expression for parameter L  [11]. Taking into account the 
boundary conditions yields the expression for the thickness of the critical nucleus. The optimal concentration profile 
without account of Cahn-Hilliard terms in driving force (4) has discontinuities corresponding to the rule of common 
tangent. Calculation of the gradient terms leads to continuous curve of the optimal concentration profile. 

To check the correctness of above mentioned approximation we solved the same problem by numeric finite-
difference method. To do this we modified the numeric solution of the Cauchy problem for the case of unknown 
boundary position. Considering a set of possible RX  values we solved eq. (5) with given function )(XCI  and it’s 

derivative )(XCI
′  by finite difference method and found the value of )0( =XCI . If this value coincided with the 

left boundary condition 0C  (with given accuracy ε ) we took the position RX  on the right boundary and corresponding 
concentration dependence as a solution. The results of numerical calculations practically coincided with the 
semianalytical approach. In particular, a concentration profile inside the nucleus was practically linear, so that the 
nucleus thickness can be well approximated by the simple formula: 
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Substituting the concentration profiles )(XC  at fixed R in the eq. (4) for the Gibbs energy change yields the 
dependence )(RG∆ . This dependence has a familiar form with the maximum, corresponding to a nucleation barrier. 

The solution of the boundary problem (5-6) corresponds to extreme of the functional G∆ . To check whether this 
extreme is a saddle point, one must investigate the sign of the second variation [11,12]. In the case of the saddle point 
this sign must be different for different directions in the configuration space. 
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2.3 Dependence of the nucleation barrier on the concentration gradient. 

Further we use the nondimensional parameters and turn to new variables: 
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For numeric calculations one needs certain upper limit instead of infinite the integral 2GG∆ . This upper limit was 
determined under condition when new optimal concentration profile coincides with the initial profile at infinity. The 
nucleation barrier CRGG∆  is found as a maximum of the dependence ( )RRGG∆  calculated for optimized 

concentration profiles C(XX,RR) at fixed parameters Ω , LL0 , CR, K and P. 
In this paper we investigate the dependence of nucleation barrier on the initial concentration gradient. First of all, 

emphasize that the finite nucleation barrier exists at any concentration gradient, so that there is no absolute prohibition 
of intermediate phase nucleation by the sharp concentration gradient, contrary to the results [5-10]. We believe that the 
main reasons are the redistribution calculation outside the nucleus in X-direction (which is not taken into account in [5-

10]) and assumptions of different diffusion mechanisms in [5-11]. The dependence 






0

1
LLGGCR∆  is monotonously 

decreasing (figure 4). 
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Fig. 4. Nucleation barrier ∆GGCR dependence on initial concentration gradient LLo

-1 (in non-dimensional 
quantity) or on annealing time of the binary diffusion couple for thermodynamic driving force (4), which is 
determined by set of parameters: СR=0.85 и K=1/4, Ω=0.1, Р=1. 

The decrease of nucleation barrier at big gradients is caused by the big difference between initial and optimal 
concentration profile, which leads to the integration of bulk driving force over the larger distances outside the nucleus. 
In particular, the nucleation barrier appears to be finite at any concentration gradient and can depend on it (∇C) 
monotonously. With decreasing concentration gradient the nucleation barrier increases. And only after a certain value 
∇CCR nucleation should be unsuccessful. Let’s imagine the concentration gradient forming as a result of previous 
diffusion (see eq. (3)). It means that the probability of nucleation can be big at the very beginning of interdiffusion and 
that the new-born nuclei may became subcritical and vanish if they had no time to grow. 

In common case all three modes (longitudinal, transversal, polymorphous) of nucleation may exist simultaneously. 
In such case the presented longitudinal nucleation mode will be most preferable (most probable) on initial stage of 
reactive diffusion. In other words the initial concentration gradient may stimulate the formation of a new phase as it 
observed by tomographic atom-probe method for binary couple Al/Ni in [4]. 

Optimization procedure determines shape of the nucleus at once. For the case 01 LL →∞  the nucleus has needle-

like shape. Decreasing the initial gradient 01 LL  to the certain critical value ∇CCR leads to changing the f shape of the 
nucleus – it became pancake-like. 

The nucleation in this mode is impossible when the initial concentration gradient became smaller than certain 

critical value ∇CCR, which is approximately equal to the gradient of the optimized profile LL
1 . That is for big 

annealing time (the gradient will be small), when CR0 CLL10 ∇<< /  the nucleation in such mode will be 
impossible. In this case polymorphous and transversal modes will operate. 

The mode of the total mixing inside a new-born nucleus [7] is the particular case of the above shown coherent 
method [11,12]. It takes place when the optimized gradient is equal zero. There is a principal difference in results of 
presented here longitudinal nucleation mode from the total mixing mode. In longitudinal nucleation mode the 
nucleation became impossible after the certain critical value of gradient whereas in total mixing mode there is no such 
critical gradient so that the nucleation is always possible for all gradients. This difference is connected with the absence 
of the gradient in the nucleus. 

In next chapter we will see that the choosing the diffusion mechanism will determine the nature of the dependence 
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of the nucleation barrier on concentration gradient. 

3. Other diffusion approaches. 

3.1. Modified transversal mode - allowing transversal mode. 

To feel the main peculiarities of the previous model, compare it with the results of more traditional approach [6], 
when diffusion during the nucleation is allowed only in the region (- X R , X R ) and proceeds independently in every 
slice ( X , dXX+ ) perpendicular to the C∇  - direction (figure 5). 

The driving force is written only in the transformation region (in the nucleus). Gibbs free energy densities (per 
atom) for old and new phases are parabolic: 
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Fig. 5. Scheme of multi-layer tablet in which the components supply the nucleus perpendicular to the C∇  - 
direction. Scheme is done on a base of the model in [6]. 

This transversal diffusion is supposed to be fast enough to satisfy the rule of parallel tangents (figure 6). 
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Fig. 6. Gibbs free energy density (energy per atom) dependence on concentration for parent phase (old) and 
intermediate phase (new). Parabolas are symmetric with respect to 
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Then the change of Gibbs free energy due to nucleation of a cylindrical tablet has the following form: 
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σ '  is the surface energy (per unite of area) of the nucleus interfaces, perpendicular to the ∇C  - direction. 
Approximating concentration profile in the parent phase as linear dependence: ( ) CxCxC O ∇⋅+≅ , one obtains the 
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resulting expression for the changes ∆G1  и ∆G2 : 

 ( ) ( )
3

12
3

222
01

R
new

old
old

R
XRCXRCgG ⋅⋅∇⋅








−+⋅⋅−= π
α
ααπ∆∆ ,  

  ( ) 2
2

2
2 2

2
RXPCG Rnew

old

π
α
αβ

⋅⋅











−








⋅∇⋅=∆ . 

According to the eq. (9) if old
o

new
o CC =  then it yields ( ) ( )new
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o0 ggnC∆g −= . 

Expressions ∆G1  and ∆G2  represent the bulk contributions into the energy of transformation. And ∆G3 , 4G∆  

corresponds to the surface energies on each side and along the face of cylinder with surface tension values σ и σ′  
respectively. 

The expression for gradient energy ∆G2  is: i) negative (βо≅β>0, Р=βо/β≅1 and Pnew

old

<



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


2

α
α ) because of the 

concentration gradient in the nucleus necessarily less than initial in the parent phase ( newold α<<α ), ii) proportional 
to the volume of the nucleus. The gradient energy 2G∆  is determined here only in the volume of the new phase. In our 
previous problem the gradient energy is determined on the all X axis and consist of as bulk energy contribution as 
effective surface energy. 

The energy of transformation ∆G  is function of the volume V R X R= ⋅π 2 2  and shape parameter ϕ =
R

X R

 

(further Р=1). Eq. (10) yields: 
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There is the principal difference of dependence (11) from obtained one in [6]. In our case the sharp concentration 
gradient makes influence on driving force in two ways: on one side, it makes increasing the effective driving force of 
transformation (due to second term in the coefficient A), on the other side, big gradient makes decreasing the stimulus 
(because of the coefficient B, B>0). So for small volumes the big gradient helps the nucleation process ( AVG −∆ ~ ) 

in such modified transversial mode, and it suppresses the growth of the nucleus for big volumes ( 2
5

BV~G∆ ). 
The dependence of the function ( )VG∆  may be monotonic as well as nonmonotonic in principle. It depends on the 

value of the concentration gradient and other thermodynamic parameters. It is interesting that if nucleation is impossible 
for the case of gradient absence ( ( )VG∆  - is a monotonic increasing function) in the presence of the big initial 

concentration gradient certainly leads to that the dependence ( )VG∆  will be nonmonotonic for presented mode. The 
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necessary condition is 
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Gradients кр
trCC ∇>∇  under the additional stipulation that ( ) 0, =∇ VCG кр

tr∆  for V>0, determine the sufficient 
condition, when big gradient stimulates new phase formation. 

Thus in old prohibiting transversal mode [7] big gradient only suppresses the nucleation and growth and in 
presented here modified mode it stimulates the new phase appearance and suppresses the growth. So such modified 
mode we will call the allowing transversal mode with respect to old prohibiting mode. 

Notice that if coefficients of nonlocal interaction βо, β will be small (that is for all real gradients it meets the case 
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α−β>>∆ ) then the prohibited mode will be obtained. 

Variational procedure 0=ϕ∂∂ G∆  for shape factor yields:  
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In the limit for small volumes and finite gradients or for finite volumes and infinitesimal gradient quantity Wulf 

rules yields: ( )
σ
σϕ
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For big volumes and/or for big gradients the shape factor approaches infinity as a function of ( ) 2
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Proceedings of DIFTRANS’2001 
Bulletin of Cherkasy State University. Physics, vol. 37-38 (2001-2002) pp.129-144 

141

3.2. Modified polymorphous mode - allowing polymorphous mode. 

Let’s reconsider this mode [5,9] by account the gradient contribution into the energy of the system. The influence of 
this term may be a determining factor on initial stage when the gradient of concentration is a maximum. 

For eq. (9) new concentration ( )XCnew  and old ( )XCold  are linked: ( ) ( ) XCCXCXC O
oldnew ⋅∇+== . 

And expression (10) for this mode: 
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Meaning of the '
1G∆ , ∆G2 , ∆G3 , ∆G4  is evident from previous analysis for transversal mode. After the same 

algebra for ∆G  as the function of the volume and form factor (where made assumption o
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In dependence of values of interatomic interaction potentials in the new phase and in the parent phase the sharp 
initial gradient may not only suppress the nucleation (in the case ββ ≤o ) but stimulate one (in the case ββ >o  

under the necessary condition 
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The sufficient condition is formulated similarly: ( )VG∆  will be nonmonotonic with the maximum and minimum 
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Such gradients кр
polCC ∇>∇  for which ( ) 0, =∇∆ VCG кр

pol , V>0, determine the sufficient condition when new 
phase formation will be advantageous. 

The influence of the gradient on shape factor in this mode is the same with comparison of the previous method. 
Thus we have found that gradient term account makes essential changes in thermodynamic results for all three modes. 

3.3. Estimation and discussing of modes. 

Let’s show that influence of sharp concentration gradient in last two modes may be main on initial stage. This is 
obvious from the estimation of the nonlocal interaction parameter: 
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consequently, this value is compatible with the bulk contribution in the energy of transformation : 

( ) ( ) 3
92029new

o
old
o0 101010ggnC∆g

m
J

=⋅≈−= − . These estimations confirm our criticism directed to 

imperfection of the problem description in inhibiting polymorphous and transversal modes. 
Notice that for the case of ββ ≤o  the polymorphous mode will be prohibiting whereas the transversal mode will 

be allowing anyway (due to newold α<<α ). 
In principle, for these two modified modes in dependence of the parameters of a system there exist four different 

ways of evolution of the Gibbs free energy, evolution of the G∆  at the beginning of annealing (t=0), when gradient is 
maximum to moment of total smoothing of concentration profile (t→∞), when gradient is equal to zero. We 
demonstrate it on figure 7. 

When dependence in some mode will be monotonously increasing function then nucleation will take place by 
another mechanism, other mode. For example, in the case (c) on fig. 7 nucleation in polymorphous and transversal 
modes will be forbidden but it may be allowed in longitudinal nucleation mode. 
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Fig.7 Evolution ways of ( )VG∆  in polymorphous and transversal modes of nucleation – dependence on time: 

(а) – initial gradient stimulates the new phase appearing and suppresses its growth. In final state nucleation is 
impossible. 

(b) – initial gradient stimulates the new phase appearing and suppresses its growth. In final state nucleation is possible 
even without gradient. 

(c) - initial gradient suppresses the nucleation. In final state nucleation is impossible even without gradient. 
(d) – initial gradient suppresses the nucleation. Without gradient in final state nucleation is possible. 

4. Resume 

Nucleation barrier depends on concentration gradient so it depends on annealing time. 
The different diffusion mechanisms make the different dependencies of the nucleation barrier on concentration 

gradient. 
Comparing the inhibiting polymorphous and the inhibiting transversal modes with the longitudinal nucleation mode 

it is possible to say that the longitudinal nucleation mode is the most probable on initial stage of reactive diffusion. 
The main result of reconsidering and modifying of the inhibiting modes in the concentration gradient - big 

concentration gradients lead to nonmonotonic dependence of Gibbs free energy on a volume of a new phase. 



 
 

144 

Depending on the parameters and choosing the nucleation modes the dependence of Gibbs free energy on new phase 
volume may be monotonic, nonmonotonic with the maximum and nonmonotonic with the maximum and minimum 

There is a possibility of conversion of different modes – changing the modes from one to another. 
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