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Abstract

A model of nucleation of a new phase nucleus in an isolated nanoparticle is presented for the case of a polymorphic transition. It is
shown that due to the limitation in the size of the system, a phase transition which could occur in a macroscopic sample is inhibited and
situations may be realized where a metastable phase may be formed in preference to the most stable phase. We present a numerical anal-
ysis for the description of the evolution of a polymorphically transforming Fe nanoparticle ensemble subjected to temperature cycling.
The time dependence of the volume fraction of the new phase is determined and the existence of a size-induced hysteresis, which is depen-
dent on particle size, is demonstrated. The obtained results may be employed in the development of alternative methods of information
processing in current and future information technologies.
� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Nanostructure design is a key aspect of nanotechnology.
Nanotechnology is directed to achieving the ability to build
materials and products at an atomic level of precision and
has been one of the most active areas of scientific research
in the last decade. Metal nanoparticles and nanopowders
have a specific significance among nanostructured materi-
als due to their wide range of practical applications, includ-
ing catalysis, design of composite materials with specific
properties such as higher tensile strength and fatigue
strength, transportation, aerospace, sports products, chem-
ical and food processing.

In order to develop nanomaterials with desired structure
and properties, knowledge of the basic principles and spe-
cific features of self-organization processes at the atomic
and/or molecular level is of basic importance. However,
despite the widely acknowledged importance of nanomate-

rials, our understanding of the specific features of the evo-
lution of first-order phase transitions in such systems is far
from complete. In the present paper, we analyze first-order
phase transitions in ensembles of nanoparticles both from a
thermodynamic point of view and with respect to the spe-
cific features of the kinetics of such processes, specifically
targeting polymorphic transitions in metallic nanoalloys
undergoing temperature cycling.

Phase transformations of materials in confined volumes
can deviate considerably from those observed in the
bulk [1–3]. Compared with bulk materials, nanosized sys-
tems are characterized by a high ratio of the number of sur-
face to volume atoms [4]. This peculiarity leads to the
possibility of the stable existence of metastable phases, a
property that can be employed in nanotechnology as a
means to improve the physical properties of materials.

One of the well-known physical properties of nanomate-
rials is the variation of the melting temperature with the
size of the samples, as theoretically predicted by Pawlow
as early as 1909 [5–8]. For example, the melting tempera-
ture Tm of an isolated nanoparticle decreases when the size
R of the nanoparticle reduces according to the relation:
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T m � T m;1½1� C1=R�: ð1Þ
Here Tm,1 is the bulk melting temperature, C1 is a con-

stant for a given material and depends on the surface tension,
r. The decrease of Tm is noticeable when R has values in the
nanometer range. This kind of behaviour has been known
for a long time and has been verified by recently carried
out experimental, theoretical and computer investigations
on melting and freezing of low-dimensional materials [9].

Experiments have demonstrated the possibility of super-
cooling and superheating of nanoparticles. For example, a
150 nm Bi film melts at 273 �C but solidifies at 165 �C, i.e.
107 �C below the melting temperature. In this example, the
cooling rate at solidification was 600 K s–1 [10]. The super-
heating of small particles and materials is not easily
observed in metallic systems and has been little reported
[11]. Applying a very high heating rate, large transient
superheating might be obtained by suppression of the melt-
ing kinetics. Melting generally proceeds from a free surface
or interface and there should be no large nucleation barrier
to the formation of a liquid, since the solid–vapour inter-
face has generally higher energy than the sum of the
liquid–vapour and solid–liquid interface energies. The
result, when the liquid coats the solid part, coincides with
the well-known wetting effect related to the small value of
the surface tension of a liquid with respect to that for a
solid [12]. The generally used critical undercooling (or crit-
ical supercooling temperature) needed for the formation of
the low-temperature phase depends on the cooling (heat-
ing) rate. This implies that these quantities are determined
not only by thermodynamic factors but by kinetic ones as
well. In the present paper we shall distinguish the thermo-
dynamically determined critical undercooling and super-
heating as functions of the size of the nanoparticles from
the kinetically defined critical undercooling and superheat-
ing as functions of cooling and heating rates and nanopar-
ticle size.

Another example in which size-induced effects and, in
particular, size-induced hysteresis phenomena occur is cap-
illary condensation (phase transitions in pores or capillaries
– for some recent work in this direction, see e.g. [13,14]).
Capillary condensation is important for the understanding
of the properties of porous materials and represents the
surface-driven phase change accompanied by shifts in the
phase coexistence curves. By plotting the pressure (or tem-
perature) vs. the total number of moles adsorbed in such
materials it is possible to construct a size-dependent phase
diagram similar to bulk equilibrium coexistence curves. In
this respect, three aspects are important: (i) one can see dif-
ferent shapes of hysteresis loops in the adsorption iso-
therms; (ii) hysteresis effects vanish above some hysteresis
critical temperature which is lower than the bulk critical
temperature of the corresponding transition; (iii) there is
some shift in the hysteresis critical temperatures, and these
increase with decreasing pore width. Recently, one of the
present authors analyzed the phase separation of a binary
alloy taking into account the concentration redistribution,

and demonstrated the existence of size-induced hysteresis
effects [15].

The melting behaviour of nanoparticles of Pb–Bi alloys,
observed by hot stage transmission electron microscopy,
shows a similar size-induced hysteresis loop [16]. At the same
time the theoretical consideration of structural phase transi-
tions in nanomaterials undergoing temperature changes still
remains an open question [17,18]. Bearing in mind Eq. (1),
such hysteresis cannot be explained by thermodynamics
alone but has to involve a description of the kinetics of melt-
ing and crystallization as well. In order to develop a theoret-
ical description of the above-mentioned hysteresis effects in
cyclic melting and crystallization, in the present paper we
perform a thermodynamic analysis of the formation of a
nucleus in a nanoparticle and apply the thermodynamic
approach to the study of the kinetic “decoding” the transi-
tion back and forth during the temperature cycling of a
nanopowders. Herein, our particles are assumed to be rela-
tively large, and the number of atoms, N0, in each particle
is of the order 103–107, so that (i) thermodynamic arguments
remain valid; and (ii) each surface may be characterized by a
single value of the specific surface energy (taken as indepen-
dent of size). These conditions are met for metallic particles
when their radius is equal to or larger than about 2 nm.

The paper is arranged in the following way. First we
develop a model of phase transition in an isolated nanopar-
ticle and derive general thermodynamic results (Section 2).
We then introduce the kinetic model (Section 3) and dem-
onstrate by numerical analysis the existence of a size-
induced hysteresis. We show the dependence of this hyster-
esis on the rate of temperature change and properties of the
nanopowders, and how it results in a polymorphic trans-
formation of an ensemble of Fe nanoparticles subjected
to a temperature cycling (Section 4). Section 5 completes
the paper with the summary and conclusions.

2. Thermodynamic model and results of the thermodynamic

analysis

2.1. The model

Our analysis is based on two ideas, which seem to be
very simple, but have so far not been taken into account
generally in the analysis of the kinetics of phase transitions
of nanoparticles (cf. also Ref. [19]). First, it is clear that an
“anomalous” appearance of metastable phases in small sys-
tems is related to the change in the conditions of phase
equilibrium. In bulk materials, the stable phase (say,
phase 1) is the one which has the lowest bulk Gibbs free
energy (per volume of the system), g: g1 < g2. The sub-
scripts 1 and 2 refer here to phases 1 and 2, respectively.
In the description of nanoparticles one has also to take
into account, in addition to bulk contributions, the surface
(and/or interfacial) free energies, r1 and r2. Then the
Gibbs free energy G of the transforming system has
the form: G1 ¼ 4pR3g1=3þ 4pr1R2 for phase 1 and
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G2 ¼ 4pR3g2=3þ 4pr2R2 for phase 2. Here the particles are
assumed to be of spherical shape with radius R (Fig. 1).
Due to the different surface energy contributions of the
phases, the equilibrium conditions may be changed so that
the metastable (from the usual, “bulk” point of view)
phase 2 becomes the stable one: G1 > G2; g1 þ 3r1=R >
g2 þ 3r2R. For nanosystem sizes of R < R� ¼ 3ðr1 � r2Þ=
ðg2 � g1Þ the metastable phase 2 will be the thermodynam-
ically more advantageous. Here R� is the system’s transi-
tion size, i.e. the size of the whole system transforming
from phase 1 to phase 2 and vice versa. Based on such con-
siderations it becomes clear that the decrease in the sys-
tem’s size R may lead to a situation in which the phase
with smaller surface tension becomes more probable and
stable. Thus, size constraints may be the main reason for
the formation of a metastable instead of a stable (from
the macroscopic point of view) phase.

The second argument, which is equally important for
nanosystems but usually disregarded, is related to nucle-
ation, i.e. the formation of a new phase inside the initially
supersaturated ambient phase. Nucleation implies the
reconstruction of the structure of the system and yields
the appearance of a new interface (with corresponding val-
ues of r12). Owing to the competition between bulk driving
force and surface terms, the Gibbs free energy required to
form a nucleus of a new phase goes through a maximum Gc

(the so-called nucleation barrier). Here, the size of the
nucleus – corresponding to the maximum (maximum
points in Figs. 3 and 4) or more generally to the saddle-
point of the thermodynamic potential – is called the critical
size of the new phase nucleus and does not coincide with
the transition size R� of the whole system as defined above.
If the value Gc is very high compared with the energy of
thermal motion kBT (where kB is the Boltzmann constant
and T is the temperature of the system), then a phase tran-
sition via homogeneous nucleation is impossible. Since the
above-mentioned (interface and external) surfaces exist at
the transition, they will affect the value of Gc, and it is thus
to be expected that as the surface energies contribute to the

size-dependent transition temperature, they will play an
important role in the transition of nanoparticles.

Let us assume that a small, isolated, initially supersatu-
rated particle of a given alloy exists as a-phase and then is
quenched into the two-phase region (say, a-phase is stable
at low temperatures, whereas the b-phase exists at higher
ones). Then a phase transition may take place from the sin-
gle a-phase state: (i) to the b-phase state, say at tempera-
ture T1; and (ii) to a two-phase a + b state, say at
temperature T2. A single nucleus of a new phase can form
inside the particle as shown on Fig. 2.

It is now possible to evaluate the Gibbs free energy of
the corresponding transition. The reasoning is based on
the calculation of the temperature variation of the Gibbs
free energy for the involved phases, G(T), performed under
isobaric conditions. Let N0 be the number of atoms in the
particle. At fixed temperature T, the total energy, Ga of the
initial a-phase nanoparticle is given by:

Ga ¼ N 0g1a þ faN 2=3
0 ra ð2Þ

In this equation, g1a is the bulk Gibbs free energy den-
sity of the a-phase, ra is the surface tension (related to one
surface atom), faN 2=3

0 is the number of surface atoms, and fa
is the shape factor. In a similar way one can write the
Gibbs free energy of the transformed (into b-phase)
nanoparticle:

Gb ¼ N 0g1b þ fbN 2=3
0 rb ð3Þ

0
R*

R

G( )R

G (R)1

G (R)2

Fig. 1. Qualitative representation of the size effect on the change of phase
equilibrium conditions. R� is a system’s transition size at which metastable
phase 2 becomes stable.

Fig. 2. Transition modes: (a) initial nanoparticle with a-phase inside; (b)
the same particle after the nucleation of the b-phase; (c) the same particle
after the polymorphic a–b transition. N0 is the number of atoms in a given
particle.
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where the symbol b refers to the b-phase.
On the other hand, if such first-order phase transition

(from a-phase to b-phase) takes place it should proceed
via nucleation. This means that when the new phase crystal
nucleates, the Gibbs free energy dependence has to be writ-
ten for the a + b configuration shown on Fig. 2b. We get:

Gab ¼ N ag1a þ N bg1b þ faN 2=3
a ra þ fbN 2=3

b rab; ð4Þ

where Na and Nb are the number of atoms in the a- and b-
phases, respectively; g1b is the bulk energy density of the b-
phase; and rab is the interfacial tension at the boundary of
the a-phase and b-phase. In addition, one has to take into
account the conservation of matter in the considered finite
system, i.e.

N a þ N b ¼ N 0 ð5Þ
The change in the Gibbs free energy DG of the nanopar-

ticle related to the formation of a new nucleus is then:

DG ¼ Gab � Ga ¼ Nbðg1b � g1aÞ þ fbN 2=3
b rab ð6Þ

The condition that the Gibbs free energy of the whole
system is equal to the free energy of the initial single-phase
state can be taken as the a?b-phase transition criterion
(which gives the system’s transition size R� if nucleation
is omitted from the account).

For the following thermodynamic discussion, we need to
specify the specific interfacial energy rab between the two
phases. In experiments, rab is a poorly determined quan-
tity. For qualitative estimations, the absolute value of this
quantity is not necessary, and we can write in our case of
the a–b interface the relation:

rab � jrb � raj ð7Þ
The qualitative estimation Eq. (7) is related to the coher-

ence between a-phase and the b-phase, yielding a small
interface energy rab, and it also corresponds to the Fe sys-
tem, which we want to use in the third part of the work for
the kinetic analysis [20–24]. We assume in agreement with
experimental data that rab is only slightly dependent on
temperature and we neglect such dependence. In contrast,
we use a nonlinear temperature dependence of bulk driving
force for the phase transition. The bulk driving force obeys
a quadratic law as:

ðg1b � g1aÞ ¼ AT 2 þ BT þ C ð8Þ

where the parameters A, B and C are fitting constants
which can be determined from experimental data. This
relation is a direct consequence of a Taylor expansion with
respect to temperature including second-order terms and
can be employed, in particular, for the description of a
polymorphic transforming Fe system discussed as an exam-
ple in the further analysis (see Refs. [20–24] and references
therein). The relation (8) includes the effect of stress energy
as well. It is also important for the understanding of first-
order phase transitions at low temperatures [25].

2.2. Results

2.2.1. Polymorphic phase transition temperature in a bulk

system

Having outlined the basic features of the thermody-
namic model, we can now perform a theoretical evaluation
of the size-dependent temperatures of the structural phase
transitions of nanoparticles.

At the structural transition for bulk system,
Gb ¼ Ga; N 0 � N 2=3

0 and g1b � g1a ¼ 0 holds. This rela-
tion represents the conditions for phase equilibrium. It
turns out that the bulk transition temperature for a macro-
system, T1, should then satisfy:

T 2
1 þ vT1 þ g ¼ 0 ð9Þ

Here v = B/A and g = C/A and the solution of the qua-
dratic equation Eq. (9) for T1 gives the interrelations be-
tween T1 and the parameters A, B, and C as:

T1 ¼ �v=2� 0:5ðv2 � 4gÞ1=2

¼ �0:5B=A� 0:5ðB2 � 4ACÞ1=2
=A ð10Þ

From these two values one must choose the one which cor-
responds to the experimental value T1 in a given tempera-
ture interval and represents the physically reasonable
solution.

2.2.2. Polymorphic phase transition temperature in a

nanosystem

The value of T1 determines the polymorphic phase
transition temperature for a macroscopic system. Let us
now analyze how this temperature changes in samples of
finite size.

The system is considered to be an isolated metal sphere
at uniform temperature, in a state of mechanical equilib-
rium. Gravitational effects are neglected. At the a?b struc-
tural transition point for a nanosystem totally transformed
from a-phase to b-phase, Gb � Ga ¼ 0 [8,26] holds. Due to
this transition criterion one can find the transition size R�

for transforming particles, which determines the limiting
transition temperature T1. The case when the a-phase has
the same free energy as the b-phase gives the condition that
the difference between the Gibbs free energy of the initial,
entirely a-phase, and final, entirely b-phase, vanishes. This
leads to:

N 0ðg1b � g1aÞ þ N 2=3
0 ðfbrb � faraÞ ¼ 0 ð11Þ

It turns out that the transition temperature T1 for a
given nanosystem is found from the equations:

T 2
1 þ d1T 1 þ l1 ¼ 0 ð12Þ

d1 ¼ v ¼ B=A; l1 ¼ C=Aþ N�1=3
0 ðfbrb � faraÞ=A

resulting in:

T 1ðN 0Þ ¼ ðd1=2� 0:5ðd2
1 � 4l1Þ

1=2 ð13Þ
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It is easy to show that this formula can be represented to
depend on the size of the sample. The respective equation
is:

T 1ðN 0Þ ¼ �0:5B=A

� 0:5 B=A½ �2 � 4 C=Aþ N�1=3
0 ðfbrb � faraÞ=A

h in o1=2

ð13aÞ
This relation is similar to the Thomson equation for

melting with contribution from the surface energies of both
phases [4,6,9,27]. It leads in the limit of large sample sizes
to the macroscopic result, Eq. (10); i.e.

T 1ðN 0 !1Þ ffi �0:5B=A� 0:5f½B=A�2 � 4½C=A�g1=2 ¼ T1

ð14Þ

The quantity T1(N0) is important for the understanding
of the behaviour of a transforming nanosystem and usually
has the form given by Eq. (1) for melting of nanoparticles.

One can introduce the notion of size-induced “critical
supercooling” (size-induced “critical superheating”) as the
difference between the temperatures defined via the transi-
tion criterion in a nanomaterial and in bulk:
DT � ¼ T 1 � T1. We see from Eq. (13) that size-induced
“critical supercooling” is a thermodynamic characteristic
which depends on system parameters and the size of the
system. The notion of critical supercooling implies that a
phase transition is possible only (at some fixed size) if the
supercooling DT ¼ T � T1 is larger than DT �. If the super-
cooling is less than this critical value DT < DT�, then a
transition is prohibited. In other words, a phase transition
may occur in a given nanosystem only beyond a certain
“critical supercooling” larger than the macroscopic one.
A similar notion of size-induced “critical supersaturation”

was introduced by the authors in the thermodynamic anal-
ysis of the problem of phase separation in solutions of
nanosizes taking into account redistributions of the
atoms [1,28]. A similar situation exists for the nucleation
in pores [1,14,29].

2.2.3. Two-phase states in a nanosystem

We now investigate the possibility of a two-phase state
appearance in a nanosystem. Such a situation may occur
when the inequality DG ¼ Gab � Ga 6 0 holds. It corre-
sponds to the case of equal free energies of the initial a-
phase state and the two-phase a + b state. It is worth not-
ing that it does not mean that the a + b-phase state is the
thermodynamically stable one (the situation is similar to
that shown in Fig. 1 at the system’s transition size R�; see
below) because the equality of Gibbs free energies does
not signify coexistence. The temperature T2 is the temper-
ature at which the necessary condition for the possibility
of development of a a + b two-phase state becomes ful-
filled. It leads to:

Nbðg1b � g1aÞ þ fbN 2=3
b rab ¼ 0 ð15Þ

It turns out that the temperature T2 for a nanosystem can
be found from:

T 2
2 þ d2T 2 þ l2 ¼ 0 ð16Þ

d2 ¼ B=A; l2 ¼ C=Aþ N�1=3
b ðfbrabÞ=A

A detailed analysis shows that the temperature T2

depends on T1 and varies with Nb in the following way:

T 2 ¼ �0:5B=A� 0:5f½B=A�2 � 4½C=Aþ N�1=3
b ðfbrabÞ=A�g1=2

ð17Þ
Again, in the limit, when Nb ?1, we obtain

T2 = T1 = T1. Hence, in accordance with the law of con-
servation of matter, Eq. (5), N b 	 N 0 in the above-men-
tioned case, and the condition N0 ?1 is fulfilled as
well. This means that in the bulk system the condition
for the appearance of a two-phase state coincides with
the phase transition condition.

2.2.4. Work of cluster formation for nucleation in

macroscopic and nanosized samples

In accordance with the classical theory of nucleation, the
free energy change DGcl related to the a ? b + a ? b-
phase transition in bulk material, at T1, may be estimated
by the relation:

DGc1 ¼ N bðg1b � g1aÞ þ fbN 2=3
b rab ð18Þ

The Gibbs free energy change related to the formation
of a critical nucleus of a new phase DGc (nucleation barrier)
is calculated from the condition ð@DGcl=@NbÞ ¼ 0:

DGc ¼ ð4=3Þffbrabg3
=fg1a � g1bg

2 ð19Þ

This maximum is reached at a critical nucleus size. The
critical size of the nucleus is determined as:

Nbc ¼ fð2=3Þfbrab=g1a � g1bg
3 ð20Þ

In the case of nucleation in a nanosystem, the change in
the Gibbs free energy DG, related to the a?b-phase transi-
tion, must be estimated by Eq. (6). From this, one can find
the free energy barrier from the condition
@DG=@Nb ¼ 0; @2DG=@N 2

b < 0. Here, Nb has values in the
interval from 0 up to N0. The nucleation barrier, as well
as the number of atoms in the critical nucleus, have the
same form as expressed by Eqs. (19) and (20), respectively.
The difference between nucleation in nanosystems com-
pared to bulk samples is caused by the fact that nucleation
and phase transition become impossible for particles con-
sisting of fewer particles than the number of atoms in the
critical nucleus of the new phase, i.e. Nbc atoms (when
N0 < Nbc).

2.2.5. The influence of varying T and N0 on DG

Let us now consider Eq. (6) in more detail and plot the
dependence of DG on Nb at different fixed values of T and
N0. The results of the computations are shown in Figs. 3
and 4. They represent general thermodynamic qualitative
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results that should occur independently of the particular
properties of any real material.

Let us look in detail first at the effects of variation of the
temperature of the nanoparticles on the driving force
g1a � g1b and DG by investigating the dependence of Eq.
(6), taking into account the nucleation conservation of
matter (Eq. (5)). Typical DG vs. Nb curves corresponding
to the same fixed number of atoms N0 and other parame-
ters except T are shown in Fig. 3. The different curves are
drawn at the following conditions: 0A, phase transition is
impossible when g1a � g1b < 0; 0B, phase transition is
impossible, the critical nucleus size Nbc coincides with the
total number of atoms N0 in the nanoparticle; 0C, an a–

b-phase transition into the metastable b-phase state occurs
at point C; 0D, an a?b-phase transition takes place at
T = T1 at point D when Nbc < N0 and Gb = Ga; 0FE, a
phase transition occurs at a high temperature T > T2 into
the stable b-phase. Note that the point F corresponds to
the transition criterion at T = T2 for appearance of a
two-phase state in a nanosystem, when
DG = Gab � Ga = 0. At the same time the a + b-phase state
at point F is an unstable state; the only stable state is the b-

phase at point E. Note also that Fig. 3 may be considered
for different interfacial energies rab as well as the DG curves
with other parameters being fixed and g1a � g1b < 0.

Next we discuss the dependence of the behaviour of the
system for different values of N0 and otherwise constant
values of the parameters, i.e. we analyze the size effect. In
Fig. 4 we plot the qualitative dependences of energy of
transition DG on the size of the nucleus Nb when the other
parameters are fixed. Each curve is drawn for different val-
ues of N0. As it is shown, when N0 has values below a crit-
ical number Nbc, nucleation is impossible. Thus, the limited
volume of the nanopowder particles constrains the fluctua-
tions of the new phase, and allows one to keep the alloy
nanosystem in a state that would have been unstable in a
bulk sample. Another thermodynamic result, illustrated
in Figs. 3 and 4, consists of the existence of three possibil-
ities: (i) the prohibition of phase transition for small parti-
cles (e.g. cases OA, OB in Fig. 3); (ii) the possibility of
metastable states in small volumes instead of stable ones
in the same bulk system (e.g. case OC in Fig. 3); (iii) the
possibility of phase transition into the stable phase due to
nucleation (e.g. cases OE in Fig. 3 and OB in Fig. 4).

3. Polymorphic transitions at temperature cycling in an

ensemble of nanoparticles: basic kinetic model

3.1. The model

The previous discussion was devoted to a thermody-
namic description of polymorphic transitions in a single
nanoparticle. Under experimental conditions, one gener-
ally deals with a large number of particles. In order to be
able to interpret the behaviour of such ensembles, one
has to study the phase transition of an ensemble of nano-
particles using statistical approaches, i.e. it is necessary to
introduce size distribution functions with respect to particle
sizes of the ensemble of nanoparticles and with respect to
the sizes of the aggregates forming in them (cf. Fig. 5). In
the present analysis, we will assume that the nanoparticles
are characterized by a monodisperse size distribution.

The ensemble of nanoparticles is subjected to a cyclic
change of temperature. We will study here the behaviour
of the system at such temperature cycling. In the case con-
sidered, the temperature T will change in time as a linear
function with constant rate |dT/dt| = const for cooling
and heating. First, we start from the single-phase state at
high temperatures T (Figs. 2 and 5) and then decrease
the temperature at a finite rate (cooling). We then stop
the temperature change at some point, when the alloy is
quenched into the two-phase region (curve OFE in Fig. 3
or curve OB in Fig. 4), and reverse the direction of change
of temperature, i.e. increase the temperature (heating) at
the same rate. One cycle refers to a complete change in tem-
perature from some initial value back to the same point.
From these considerations, we may determine T = T(t)
and, as a consequence, the Gibbs free energy change (Eq.
(6)) may be expressed as the function of time (via the time

Fig. 3. Qualitative dependences of energy change for polymorphic
transition in a nanoparticle. Zero point denotes the initial a-phase; points
A, B, C, D, and E correspond to the b-phase (for the details, see the main
text).

Fig. 4. Qualitative dependences of energy change for a polymorphic
transition in the nanoparticle. Zero point denotes the initial a-phase;
points A and B correspond to the b-phase state (for the details, see the
main text).
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dependence of temperature and, correspondingly, the bulk
driving force):

DGðNbÞ ¼ DGðN b; T Þ ¼ DGðN ; tÞ: ð21Þ

3.2. Kinetic equations

The corresponding “decoding” of “back and forth”

transformation is performed here within the framework
of the kinetic equation approach. For these purposes, we
introduce a size distribution function f(N,t) being equal
to the number of new phase nuclei, consisting at time t of
N atoms. The evolution of the ensemble of such clusters
formed by nucleation and growth processes will be
described by the standard kinetic equation of the theory
of nucleation-growth processes:

@f ðN ; tÞ
@t

¼ f ðN � 1; tÞ 
 vþðN � 1Þ þ f ðN þ 1; tÞ 
 v�ðN þ 1Þ

� f ðN ; tÞ 
 ðv�ðNÞ þ vþðNÞÞ ð22Þ

The frequencies of attachment v+(N) � v+(N, T) and
detachment v�(N) � v�(N, T) of atoms to a cluster of size
N are interrelated as:

v�ðN ; T Þ ¼ vþðN ; T Þ exp
DGðN ; T Þ � DGðN � 1; T Þ

kBT

� �

ð23Þ
The value DG(N) is determined by Eq. (6).
Further, the quantity v+(N) will be assumed to be pro-

portional to the surface of the nucleus v+(N) = D 
 N2/3.
Here, D is a constant of the material and depends on the
shape of the nucleus and the mechanisms of nucleation.

The conservation of number of particles results in
boundary conditions for the cluster size distribution func-
tion f(N,t). As mentioned, we assume that in one nanopar-

ticle only one nucleus can appear. Hence, one may write
both the boundary and initial conditions as:

f ðN min;tÞ¼Z�
XNmax

N¼Nminþ1

f ðN ;tÞ; f ðN ; t¼0Þ¼
Z;N ¼N min

0;N – Nmin

�

ð24Þ
where Nmin is the minimum number of atoms in the nuclei,
Nmax = N0 is the maximum possible number of atoms in
each particle, and Z is the number of particles in the nano-
powder. Because of the constraint on the number of atoms
in the nucleus of the new phase, the size distribution func-
tion on the right boundary N = Nmax was calculated from
Eq. (22) as:

@f ðNmax; tÞ
@t

¼ f ðN max � 1; tÞ 
 vþðN max � 1Þ

� f ðNmax; tÞ 
 v�ðN maxÞ ð25Þ

The main task we would like to solve with this kinetic
model is to describe the volume fraction q of the new phase
during the temperature cycling of the non-interacting
nanoparticle ensemble. This value is determined by the
formula:

q ¼
PNmax

N¼Nmin
N 
 f ðN ; tÞ

N 0Z
: ð26Þ

In fact, we shall compute the evolution of the volume
fraction q in the process of temperature cycling with differ-
ent fixed constant cooling and heating rates t=|dT/dt|
assuming different sizes N0 of the particles in the ensemble
where the transition occurs.

3.3. Equilibrium statistical distribution

At equilibrium, when the temperature T is fixed, in the
nanopowder some particles will be in single-phase states,
and the others in two-phase states (Fig. 2a and b). The corre-
sponding number of particles, feq(N,T), may be found by the
Boltzmann distribution in the statistical mechanical sense:

feqðN ; tÞ ¼
ZPNmax

N¼Nmin
expð�DGðN ; T Þ=kBT Þ


 expð�DGðN ; T Þ=kBT Þ

ð27Þ

In this case, the thermodynamic observables of the sys-
tem become averaged over the equilibrium distribution,
Eq. (27). From this, one can find the equilibrium value
for the volume fraction q of the new phase at any fixed T
as:

qeq ¼
PNmax

N¼Nmin
N 
 feqðN ; tÞ
N 0Z

ð28Þ

3.4. Specification of the parameter values

In the following, we will apply the theory and kinetic
model outlined in Section 2 to the case of phase coexistence

Fig. 5. Schematic representation of a polymorphic transition in a
nanopowder during temperature cycling: (a) ensemble of particles of N0

size before transformation; (b) the same particles after the new phase
formation; (c) the schematic representation of one complete a-Fe ? c-
Fe ? a-Fe circle for one particle of the Fe nanopowder. N is the number
of the atoms in the newly formed phase; it is assumed here that in each
nanoparticle only one aggregate of the new phase can be formed.
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and phase transformations between the c-Fe and a-Fe crys-
tallographic phases. It is well known that in bulk solid state
pure Fe can exist in three crystallographic modifications: a-
phase (body-centred cubic (bcc)), c-phase (face-centred
cubic) and d-phase (also called by some authors a-phase,
bcc). The a-Fe phase appears within the temperature inter-
val T < 1183 K. For 1183 K < T < 1665 K, c-Fe is more
preferable, and for T > 1665 K up to the melting point
the d-phase appears. This means that in the bulk case the
energy of a-Fe at T < 1184 K is lower than that of c-Fe.

One can estimate the energy barrier for the nucleation of
c-Fe from a-Fe. Taking for bulk Fe material the well-
known data [20,30], namely |n
(g1a � g1c)| = 1.2 �
108 J m�3, atomic density n = 8.58 � 1028 m�3 and
rca = 4 � 10�2 J m�2, one obtains the energy barrier value
DGc = 7.424 � 10�20 J and the critical nucleus size
Rc = 6.64 � 10�10 m. This leads to an estimate of the num-
ber of atoms Nac in the critical nucleus of the order
Nac = 4/3p{Rc}

3n � 103 atoms. For a more precise quanti-
tative analysis one has to know the temperature depen-
dence of free energy density for this transformation.
Using experimental data, we approximated the bulk driv-
ing force by a parabolic dependence as shown in Fig. 6.

Employing the above-mentioned considerations, the
corresponding set of parameters of the Fe system have been
obtained and then employed in the computations:
n = 8.58 � 1028 m�3, rac = 0.04 J m�2, ra = 2.21 J m�2,
rc = 2.17 J m�2, f = 2.486 � 10�19 m2, Dg = g1c � g1a =
kB(�0.00365T2 � 10.3952T + 7191.1424) J, kB = 1.38 �
10�23 J K�1 [20–24,30]. The order of rates of cycling are
taken as t1 = 0.04 K s–1, t2 = 0.02 K s–1 and will be speci-
fied in each simulation; the constants for numerical simula-
tion are: D = 1011 s�1, Nmin = 1, Z = 1010.

4. Competition of different Fe-phases during temperature

cycling and size-induced hysteresis

4.1. Hysteresis of c-Fe to a-Fe transformation: size effects

The change in the volume fraction of newly formed a-Fe
during temperature cycling as obtained by the theoretical
method (Eq. (28)) as outlined in Eq. (26) above is presented
in Fig. 7. It clearly exhibits a new result: a size-induced hys-
teresis of the c-Fe ? a-Fe ? c-Fe transformation. Fig. 7
shows the different hysteresis loops in the volume fraction
vs. temperature diagram. Our model shows that the width
and shapes of hysteresis loops depend on N0, dT/dt, r and
D. In particular, we traced the influence of the system’s size
N0 on the hysteresis loop. It turned out that the greater is
the size of a system, the greater is the effective width of

Fig. 6. Experimental points (D) of different authors [20–24] for the c-Fe to
a-Fe transformation and the parabolic approximation Dg = g1a –
g1c = A T2 + B T + C for the bulk driving force of the transformation
(solid curve) employed here in the calculations.

Fig. 7. Effect of size on hysteresis: loops for the fixed rate t2 = 0.02 K s–1

of temperature cycling of Fe nanoparticles between 1300 and 950 K and
different numbers of atoms in the particles: �, N0 = 500; s, N0 = 1000; D,
N0 = 2000; e, N0 = 4000; h, N0 = 8000. The solid curve q represents the
equilibrium values qeq from Eq. (24) for each fixed temperature.
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the hysteresis loop at the same rate of cooling (respectively,
heating), t (Fig. 7b).

As was mentioned concerning first-order phase transi-
tions, a minimum undercooling and superheating (depen-
dent on the cooling rate) are needed for the formation of
the new phase. The new result here is the fact that these
critical undercoolings and superheatings are functions of
the size of the nanoparticles as well.

In more detail, the temperature cycling of a Fe nanopow-
der, 1300 K ? 950 K ? 1300 K, leads to a loop-like q(t)
curve – the evolution path 0123450 in Fig. 7a. Here, one
may distinguish the following stages: 01, supersaturated sin-
gle-phase states (parent c-Fe phase) of the nanopowder (see
also Fig. 5a); 12, phase transition from the point 1 of single-
phase states to a two-phase states (parent c-Fe phase + new
a-Fe phase) at point 2 (this event indicates nucleation) due to
two-phase a-Fe + c-Fe phase states; 34 and 45, cooled and/
or superheated two-phase a-Fe states; 50, back-transition
from a-Fe phase states at point 5 to a-Fe + c-Fe states and
then to c-Fe phase states.

Let us introduce the phase transition criterion into the
kinetics of considered process. For this we assume that a
phase transition did proceed when half of the volume is
transformed, i.e. when q = 0.5 is reached. This criterion
determines the value of the transition temperature TL at
the left branch of the hysteresis loop, and similarly TR at
right branch. The difference TR–TL is the width of the hyster-
esis loop, which is a function of size and the rate t (Figs. 7 and
8). For the first time, as far as we know, the tendency of a nar-
rowing of the hysteresis loop with a decrease in the size of a
system (at a given rate of change of external parameters) is
observed here in the kinetics of a polymorphic transforma-
tion. The respective results are presented in Fig. 8.

If one extrapolates similar arguments concerning a
phase transition criterion for the equilibrium volume frac-

tion of the new phase, qeq = 0.5, then one obtains the tem-
perature of this transition, Teq, related to the equilibrium
distribution (Eqs. (27) and (28)). Generally speaking, Teq

is defined from the thermodynamically averaged value qeq

and due to this fact it represents the averaged transition
temperature and also depends on the size of the particles
in a nanopowder (cf. Fig. 8). The approximation of corre-
sponding points in Fig. 8 (indicated by symbols �) by one
curve gives the fit function:

T eq¼1183ð1�0:31=N�1=3
0 Þ or T eq¼T1ð1�4:27�10�11=RÞ

ð29Þ

Eq. (29) shows the stabilization of c-Fe phase at small
sizes. Recently the size effect on the Fe nanocrystalline
phase transformation by means of dilated crystal model
in thermodynamics has been described in terms of excess
volumes [31]. The effect of interface energy on the stability
of c-Fe at room temperature was emphasized. Our result
coincides with this finding, in which the authors showed
that the c-Fe phase can stably exist in nanocrystalline Fe
at 300 K when its grain size is below about 50 nm.

Similar results have been reported for the competition
and growth of different crystallographic phases during
the crystallization process in limited volumes of liquid
and in the case of phase equilibrium in two-phase stressed
coherent solids using direct thermodynamic equilibrium
conditions [32,33].

4.2. Effect of rate dT/ds on hysteresis curve

In Fig. 9, the hysteresis curves are shown for different
rates of change of temperature at otherwise identical condi-
tions. As can be seen, the width of the hysteresis loop TR–
TL, i.e. the effective distance between left and right
branches of the curve q(t) in intermediate temperature
intervals, depends on the rate of temperature change, i.e.
the greater the rate t, the bigger is the effective width of
hysteresis loops. As the value of t decreases, the hysteresis
loop narrows. The dashed lines connecting the different
experimental points are the approximations derived from
the corresponding formula devoted to a statistical general-
ization of the presented results:

ðT R � T LÞ=T eq � lnðN 0Þfaþ bt1=2 þ ct2=5gþ fdt1=2þ et2=5gþ h;

where the values a, b, c, d, e, h are the same constants for all
realizations.

The statistical generalization of the critical superheating,
defined as dR = (TR – Teq)/Teq, gives the approximation:
dR � ln(N0/12){p1 + p2t

1/2} + p3. Here p1 = 2.94 � 10�4,
p2 = 5.47 � 10�2, p3 = 2.2 � 10�3.

For the critical supercooling, dL = (Teq – TL)/Teq, this
study yields: dL � ln(N0/2) {p4 + p5t

2/5} + p6 with
p4 = 4.94 � 10�3, p5 = 5.31 � 10�2, p6 = �1.9 � 10�2.

It can also be observed that the hysteresis characterizes
the nonsteady behaviour of the transforming system and
the q value is not equal to qeq. If we stop and fix T, then

Fig. 8. Size-induced temperature dependences of the phase transition in
Fe nanopowder at fixed rate t2 = 0.02 K s–1: �, the values of Teq from the
number of atoms N0 in each particle of the nanopowder; D, the
superheating temperatures TR; O, the values of TL.
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the solution of Eq. (22) begins to coincide with the equilib-
rium distribution function feq(N,T) (Eq. (27)) and the value
of q tends to the corresponding value qeq given by Eq. (28).

5. Discussion and concluding remarks

In this paper, first, we presented a general thermody-
namic analysis for nucleation of one nucleus in a nanopar-
ticle. It is shown that three possibilities exist: occurrence of
a polymorphic a?b-phase transition, prohibition of trans-
formation and formation of metastable states. This model
describes a size-induced change in the critical temperatures
of phase transitions in small, isolated nanoparticles and is
then applied to the c-Fe to a-Fe polymorphic phase
transformations.

Secondly, a kinetic model of polymorphic phase trans-
formations in a nanopowder under temperature cycling is
presented. For finite rates of temperature changes one
observes hysteresis loops. Such hysteresis is demonstrated
in the framework of a kinetic equation approach (recently
one of the authors obtained similar results for the descrip-
tion of phase separation kinetics in a binary alloy by taking
into account the concentration redistribution [15]). The
computations show that the width of the hysteresis loop
depends on the number of atoms in the particles of the
powder, interfacial tension and the rate of temperature
change. In particular, the greater the size of the Fe system
and/or the rate of temperature changes, the greater is the
width of the hysteresis loop and vice versa. As these values
decrease, the hysteresis loop narrows.

It is worth noting that for the Fe system qualitative esti-
mations from different experimental data give the relations
for specific surface energies [20–24,30]. Such specification
leads to the consideration of nucleation of the new phase
occurring only inside the existing nanoparticle for the c-
Fe ? a-Fe transformation and at the external boundaries
of the particle for the a-Fe ? c-Fe transition. One can
expect interesting possibilities if the nanoparticles trans-
form due to different modes. For example, there are many
other cases where the growth of the new phase occurs at the
surface of the nanoparticle, so additional terms would
appear in the thermodynamic expressions, including a
three-phase contact line. In these cases the free energy
curves could potentially cross more than once depending
the values of the various surface tensions and line tension.
The analysis of this problem in a general form is in progress
and will be discussed elsewhere [34].

In contrast to these findings, in the experimental anal-
yses performed by Alivisatos et al. the hysteresis width
for polymorphic transition in the CdSe nanostructured
system turns out to be almost independent of nanocrystal
size, whereas our kinetic model and simulations predict a
considerable increase in the width of the hysteresis loop
with increasing particle size [17,18]. Why? This is the
question we want to answer in future analysis. First,
there is a difference between these problems. We treat
the size-induced temperature hysteresis, whereas Alivisa-
tos et al.’s group performed size-induced pressure hyster-
esis experiments. Secondly, we think that in the case of
semiconductor CdSe nanocrystals, which Alivisatos et al.
considered, the equilibrium conditions may be weakly
dependent on the size. Also, in our opinion, the pressure
change leads to the redistribution of grain sizes and the
boundaries between grains.

Recent work indicates that for nanocrystals, the grain
size variation of the transition temperature may exhibit
two characteristic regions. This feature has been demon-
strated for the case of nanocrystalline Ag [35]. In particu-
lar, as soon as the mean grain size is above about 4 nm,
the melting temperature decreases with decreasing grain
size and as the mean grain size becomes smaller than about
4 nm, the melting temperatures become almost keep con-
stant. The corresponding explanation is based on the
assumptions that: (i) a nanocrystal can be viewed as a com-
posite of a grain boundary phase and an embedded grain
phase; (ii) with mean grain size decreasing to a certain
degree, the grain boundary phase becomes dominant in
melting. A similar situation may be the reason for the pecu-
liarities of the CdSe nanosystem.

Pure Fe exhibits a magnetic transformation at the
Curie point TC = 1043 K. This point is located inside
the interval of cycling of 950–1300 K considered here.
Therefore, it would be interesting to trace the cross-cou-
pling of magnetic transformation and size-induced tem-
perature hysteresis. This work is not included here and
will be examined in due course. Nevertheless, some prior
discussion may be done. It is known that the decrease in

Fig. 9. Representation of the hysteresis effect in powder of nanosized Fe
particles related to the finite size and temperature cycling between 950 and
1300 K: the specific width of thermal hysteresis for different fixed rates of
temperature circling. The dashed lines connecting the different numerical
simulation points are approximations derived from the common formula:
(TR � TL)/Teq � ln(N0){a + bt1/2 + ct2/5} + {dt1/2 + et2/5} + h, where the
values a, b, c, d, e, and h are the same constants for all realizations.
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the size of the samples to the nanoscale can lead to an
increase in the pressure inside the particle, a change in
density and deformation. All these factors may become
crucial for the shift of TC. From this point of view,
one may expect a para ? ferro ? para magnetic trans-
formation due to simultaneous influence of the Laplace
pressure and Curie point. Another interesting related
phenomenon is the influence of the size-induced shift of
the temperature of the fcc–bcc phase transition (TL in
Fig. 7). This may be the reason for the existence of
low-temperature para- and ferromagnetic fcc c-Fe.

On the other hand, co-operative orientation of spins in a
material can result in magnetoelastic effects, e.g. in a
change of the form of magnetic influence on thermal
expansion (which is sensitive to the energy of atomic inter-
action) or on Young’s modulus. In the latter case, there
was even a relative decrease in the Young’s modulus of
about 400% for the alloy of Fe–Rh in the vicinity of the
Curie point and in the temperature interval of the polymor-
phic transformation (cubic lattice ? rhombic lattice) [36].
Hence one may expect that the magnetic transformation
can change the shape of the phase hysteresis loop in the
temperature interval at which the magnetic and phase
transformations coincide (left branch of the hysteresis loop
in Fig. 7). Thus, in our opinion, the size-induced phase and
magnetic transformations must mutually influence each
other.

It is also worth noting that the hysteresis shown is very
similar to magnetic (such as paramagnetic–ferromagnetic)
phase transitions under an applied magnetic field. This
behaviour should allow one to use the size-induced hyster-
esis effect in a way similar to that of magnetic materials for
a variety of applications such as high tech-DVD and CD
technologies, coatings, shape memory systems and many
other important applications.
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