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Abstract. The separation kinetics in a binary nanoparticle is studied by means of two-dimensional 

Monte-Carlo sampling and Ising-type model, where the species exchange positions due to vacancy 

mechanism. The model is developed in case of a free nanoparticle with a coating shell. The kinetics 

is shown to depend on the size of a nanosystem. We demonstrate a distinct size-induced freezing 

effect on kinetics of separation. 

1. Introduction 

Nanosciences aim at understanding the nanoobjects for their control, manipulation and application. 

Modern nanomaterials sciences include the numerical simulations as a practical way of validating 

the theoretical approaches through the use of computer experiments. Despite the high interest, the 

evolution of nanostructured systems at the first stages of their synthesis (nucleation) and their 

structural peculiarities are still poorly understood [1]. Understanding of nucleation in 

nanostructured systems, such as nanoparticles, is of obvious significance for further fabrication of 

new nanomaterials with desired properties. 

In this respect, the Monte-Carlo (MC) method is one of the effective methods for the phase 

transition analysis in metallic nanosystems and is proved to be efficient for calculation of 

equilibrium properties of systems, estimation of the phase stability limits, etc [2]. 

Due to their unique behaviour, metallic nanoparticles are the subject of fundamental and applied 

works [1-4]. Nanoparticles are not always uniform. In many circumstances, they consist of a core 

phase, surrounded by another phase, forming the shell of the particle. This is the case for elemental 

particles surrounded by their oxide, metal core in another metal shell, etc. It is also observed that 

some other metastable phases become stable when surrounded by another shell [3]. In some 

circumstances, core-shell structures seem to appear spontaneously, while alloying occurs for other 

alloys [4]. Despite their differences, from the viewpoint of structural stability, three main problems 

need to be addressed: i) the effect of size; ii) the effect of defects on their internal structures; iii) the 

stability of metallic nanoparticles under external conditions and fields. All these problems have not 

been completely solved both from the theoretical and experimental points of view. 

Most of the current works on metallic particles and clusters concern elemental ones [5-6]. 

Furthermore, usually the diffusion in mixtures consisting of two sort atoms is modeled by Kawasaki 

direct exchange dynamics. This is not a satisfactory representation of the diffusion in real alloys, 

where atoms can change places easily due to empty neighboring sites [7-8]. In the present 

communication, we study the process of vacancy-mediated phase separation in a nanoparticle (with 

a diameter in the range of 1 - 100 nm) consisting of atoms of two different types, A and B, and 

describe the corresponding evolution of the process in the finite volume. We treat the case of a 

binary metallic nanoalloy A1-XBX with the initial composition X0 as a supersaturated nanosystem 

whereas a nucleus of a new phase has another stoichiometry Xn, Xn≠X0. Here, the only allowed 

microscopic motion is the exchange between the vacancy and one of the nearest neighbour atoms. 

Doing this, we present 2D Monte-Carlo simulations and focus on the aspects related to the kinetics. 
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It is well documented that nucleation in nanosystems and thermodynamic properties of 

nanosystems differ qualitatively from those in macroscopic phases, for the size of the nucleus is 

comparable to the size of the mother phase [9-11]. Also, the smaller the particle is the diffusion 

coefficient should be bigger and as a consequence the kinetics is faster. As we shall see in case of 

vacancy-mediated solid-to-solid transition in coated nanoparticles one can observe the opposite 

behaviour. 

The paper is structured as follows. In the next section we describe the basic assumptions of MC 

method for microscopic theory of diffusion and the presentation of the two-dimensional MC model 

of a decomposing nanoalloy. In section 3, we investigate the kinetics of nucleation and phase 

separation in a small isolated particle and its peculiarities related to the influence of size, 

supersaturation and existence of the particle shell. Concluding remarks are presented in section 4. 

2. Model 

In the classical diffusion theory, as investigated by Frenkel in 1960s, atoms may exchange their 

positions due to three simple main mechanisms: i) interstitial mechanism; ii) vacancy-mediated 

mechanism and iii) exchange mechanism or the so called Kawasaki dynamics [8,12]. Here, we 

consider only one of the simplest and the most probable mechanisms seen in metal alloys, namely 

the vacancy-mediated mechanism. 

 

(a) 

R

X0

 (b)

Xp

Xn

 
 

Fig. 1. Schematic representation of possible phase 

transition mode in a nanoparticle: (а) – single phase 

particle of composition X0 at the initial stage, (b) – 

the same particle in a two-phase state after the 

nucleation with composition redistribution being 

taken into account. Xp – composition of ambient 

parent phase, Xn – concentration in the new-born 

phase, R – radius of a nanometric isolated particle. 

Fig. 2. Sketch-model of the barrier for the 

diffusion jump: for the atom jumping from 

position 1 into position 2. The activation 

energy Q, for 1→2 diffusion jump, is 

determined as the difference E0 – E1. The 

smaller the value E1 is the larger the 

energy barrier Q=E0 – E1 for diffusion 

becomes. 

 

When the temperature, T, is changed, first order phase transitions may take place. Let us assume 

that a small isolated initially supersaturated particle of the binary alloy is quenched into the two-

phase region. Then one should observe the phase transition from the single phase state to the two-

phase state [9-11]. Due to the limited matter reservoir, the nucleation process might differ from the 

usual bulk one [13-15]. In figure 1 we represent the possible evolution mode of phase transition in a 

single-phase particle. The “kinetic decoding” of the transformation (a)→(b) is visualized in the 

framework of the two-dimensional MC simulations. 

Consider basic model of vacancy-mediated diffusion. The activation energy for a diffusion jump, 

Q, is evaluated as follows. Let us assume (figure 2) that the energies of the positions of the atom in 

the lattice are different, while the barrier height E0 in the crossover point of potential energy relief is 

the same for all the atoms [16]. The depth of the well, where the atom is located, depends on its 

nearest environment, that is the value Ei for the at i-th atom can be determined within the first 

coordination sphere by Ising-type model: 
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Here Z is the number of nearest-neighbour atoms of the vacancy. The value of the activation energy 

Q for microscopic diffusion of the atom of type X (here X = А, В), going from point 1 to point 2 

(figure 2), is given by quantity: Q=E0-E1. In general, if the i-th atom adjoins the vacancy, the height 

at the activation energy barrier for diffusion jump of the vacancy towards i–th direction is expressed 

by: 

Qi=E0 – Ei.            (2) 

The residence time algorithm uses the ‘forced’ jump into randomly selected i-direction (i labels 

the direction). The probability of one diffusion jump into each direction is given by ratio: 
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Here νi is the frequency of the atom-vacancy interchange in the i–th direction, j is the number 

adjacent to the vacancy atom. Having obtained the pi values, one finds the successful jump 

direction by randomly generating R and comparing it with the pi, ν0i is the vacancy-i-atom 

exchange characteristic frequency [2,7-8]. 

Furthermore, as mentioned above, nanoparticles often consist of a core phase, surrounded by 

another phase, being a shell of a particle [3-4]. So, in the following MC simulations, we assume that 

the nanoparticle consists of a main nanoalloy in the core and a thin shell (figures 3-4). The core is a 

binary nanoalloy with two species A and B. The shell properties differ from the core ones, so that 

we use a third type of atoms for the surface film and call them C atoms. This gives the opportunity 

to investigate the influence of the shell on the dynamics of phase separation and the growth of a 

new phase inside the nanoparticle. Why? 

The configuration energy of the system is obtained by means of the Ising type Hamiltonian, 

taking into account interatomic nearest-neighbour pair potentials. A single vacancy was introduced 

at random into the two-dimensional nanoparticle. Each pair of atoms is characterized by the pair 

interaction potential ФXY, where the subscripts X and Y can accept one of the values A (for atoms 

A), B (for the species B), C (for shell atoms) and V (for vacancy). For a system of Ntot lattice sites 

consisting of NA sites occupied by the A-species and NB sites occupied by the B-species, the 

configurational energy of the whole system can be written following the Ising-type model: 
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where the external summation is carried out over all lattice sites Ntot of the system, while the 

internal summation only over the points within the first coordination sphere of the i-th lattice point. 

Here, Z=4. 

Let us consider the model of a separating alloy. In our opinion, the kinetic model of reactive 

diffusion introduced here is adapted to regular solutions, because it takes into account nearest-

neighbour interatomic pair potentials. Following the simple theory of a regular solid solution, 

binary alloys can be investigated by the criteria of mixing and separation (also so-called as 

demixing). In order to describe the separating nanoalloy, we assume that pair interaction potentials 

ФАА and ФBB are equal and smaller than ФАB, so that the so-called energy of ordering or mixing 

energy Emix=0.5(ФАА+ФBB)–ФАB is negative. During the process of phase transition our initially 

saturated solution should be separated into a phase containing mainly A atoms and a phase 

consisting of B atoms. From this standpoint, the stability criteria of the mixture as a function of 
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composition and of the temperature can be conveniently discussed by calculating the first and 

second differentiatives of the configurational Helmholtz free energy g(X) as a function of 

composition X. They correspond to the zeroes of ∂g(X)/∂X and ∂2g(X)/∂X2
. The last conditions 

define the metastability gap on the g(X) curve (given further). 

Our computer simulations are performed for different number of atoms Ntot in the nanoparticle: 

between 10
3
 and 10

8
 (so the vacancy concentration varies as 1/ Ntot from 10

–3
 to 10

–8
). The 

temperature T is taken to be equal to T=300 K. Pair interaction potentials are taken to be symmetric: 

ФАА=ФВB=-5⋅10
-20 

J, ФАВ=ФВA=-4.3⋅10
-20 

J in all experiments, except when explicitly noted. The 

component mobilities, that is the jump frequencies for the exchange of the vacancy with species A 

and B, are estimated as ν0A=ν0В=10
14
 s

-1
, respectively. The frequencies ν0С for vacancy-shell 

exchange is varied between 0 and 10⋅ν0A. In present calculations it is assumed that ФАC=ФBC=ФСС 

and ФVX = 0. The potential ФСС has been varied between -10
-20

 J and -10
-15

 J and is taken as ФСС=-

5.5⋅10-20 
J if else is not specified. 

Being given the above parameters for the regular solution model, one obtains ∂g(X)/∂X=0 at 

X=0.0008 and X=0.9992, whereas ∂2g(X)/∂X2
=0 at X=0.077 and X=0.923, respectively. So, the 

alloy is calculated to be metastable, when 0.0008<X<0.077 and 0.923<X<0.9992. It is absolutely 

unstable when 0.077<X<0.923. 

The algorithm of calculation is the following. First, we design the initial configuration of the 

atoms in the treated nanosystem, by random distribution of A and B atoms into the square lattice 

and by fixing the initial composition X0 of B-species. Then we introduce one single vacancy into a 

randomly found place of the nanoalloy. We determine the probabilities pi (3) for diffusion jumps of 

the vacancy into all directions by taking into account the energies Ei (1) of the nearest-neighbour 

atoms. At last, by generating the random number R and comparing it with the values pi, we find the 

successful jump direction and realize the exchange procedure, as explained above. 

It is worth noting that the shell properties are such that neither the atoms nor the vacancy can 

escape out of the core of the nanoparticle. (This is realized by introducing a smaller frequency for 

vacancy-shell jump as compared with the vacancy-core frequency.)  

The following parameters are studied as functions of the MC steps number (MCS): the number of 

new phase precipitates (small clusters), their volume, overall size. 

Furthermore, only those clusters were considered as the clusters of the new phase with minimal 

dimensions, which were composed of not less than Nmin=10 atoms of the sort B only. 

It is also useful to calculate the average size <N> of new phase clusters. Let f(N) represent the 

number of new phase clusters consisting of N atoms each, at a fixed number of MCS. Then, <N> is 

defined as: 
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where Nmax is the number of atoms in the largest cluster of the new phase. The denominator 

indicates the total number of the new phase clusters in the treated system: 

CN≡ ( )∑
=

max

10

N

N

Nf            (7) 

It is worth noting that all MC simulations and results may also be checked by visual observation. 

3. Size-induced freezing effect 

Our simulations start from a structure of Ntot atoms (figures 3a and 4a). The initial composition 

X0 corresponds to the (thermodynamically) metastable state. 

The model shows that, in accordance with the theoretical thermodynamic estimations for 

nanosystems, there is no separation in very small particles as well as in case of small 
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supersaturation [11,13-15]. The increase of Ntot, at small and fixed X0, leads to the possibility of 

nucleation of one new phase embryo inside the particle. The same reasoning is applied with respect 

to the increase of supersaturation X0 at a fixed size of Ntot. 

In the usual treatment of nucleation, it is assumed that the reservoir of matter is very large, so 

that there is no problem of matter supply during the nucleation process itself. In a nanosystem, the 

reservoir of matter is finite. Therefore, the total amount of one of the chemical components may be 

too small for the synthesis of even one critical nucleus. To see this, let us consider a binary isolated 

nanoparticle (figure 1a). Let X0 be the mole fraction of B-species in the particle (in the parent 

phase) before nucleation, Xn is the stoichometry or mole fraction of B-species in the new formed 

phase (Xn≠X0), Ntot and Nn are the total numbers of atoms in the parent and new phases, 

respectively. 

Let us assume that only a single new phase embryo of critical size N
*
n can appear (figure 1b). At 

that, the embryo of the new phase will need to keep atoms B from the parent phase. This condition 

gives the estimation for minimal number of atoms N
*
tot of a nanoparticle, where the transition may 

appear: N
*
tot=N

*
n⋅Xn/X0. The last equation is the matter conservation law. Obviously, if the number 

of atoms Ntot of the whole particle is less than N
*
tot, the nucleation becomes impossible: the total 

number of atoms B is even not enough for the synthesis of a single stable nucleus. In our case 

N
*
n=Nmin=10 is taken and Xn≈1, then N

*
tot≈10/X0 and say, for X0=0.05, one obtains N

*
tot≈200. 

Actually, the prohibition of separation in the small particle (at X0, when the alloy is unstable in 

the bulk) indicates the increasing of solubility of components. So, the MC simulations confirm the 

theoretical result of thermodynamical approach that, in small particles, the solubility of the 

components increases as compared with the bulk case [10-11]. Obviously, such behaviour is related 

to the finite size effect. 

Furthermore, when Ntot increases, one observes the competitive nucleation of a few, and then 

many, nuclei in one particle. 

To investigate the effect of the shell, we consider different values of ФСС. When ФСС>>ФAA and 

ФСС>>ФAB, the vacancy never remains in the core part: it always finishes in the shell. Here, the 

vacancy mainly moves along the core-shell boundary. Therefore, the diffusion in the core is 

inhibited and there is no phase transition at all: <N>=0. 

When ФСС is decreased such that ФСС<<ФAA, the opposite behaviour is observed: the vacancy 

‘prefers’ to be inside the core of the particle and the diffusion along the core-shell boundary does 

not take place. In this case, the nucleation and separation are homogeneous-like. This may be 

verified visually, as shown in figures 3 and 4. 

In order to fully investigate the role of the shell, one will also have to vary ν0С. When ν0С=0 (or 

ν0С<<ν0A at nearly the same potentials ФАА, ФВВ, ФАВ and ФСС), it turns out that the vacancy 

exchange inside the core part is preferred. The opposite behaviour is observed when ν0С>>ν0A. 

Physically, ν0С=0 means that the vacancy can not go out of the particle, can not exchange with the 

shell atoms, but it can move along the core-shell boundary of the particle and be inside the core 

part. 

The effect of the shell on the nucleation mechanism is presented in figures 3-4. Here we present 

two evolution modes of transition: homogeneous and heterogeneous, depending on potential ФСС: 

ФСС=-5⋅10
-18 

J for the figure 3 and ФСС=-5.5⋅10
-20 

J for the figure 4. From the above results, it turns 

out that the properties of the shell may be very important for determining the mechanism of 

nucleation and separation in a nanosystem. Care has to be taken in the study and modelling of the 

phase transition processes taking place in coated nanofilms and nanoparticles. 

The observation of the evolution of the system shows that there exists a correlation between the 

size of the new formed phase and its shape. This correlation may be reduced to one simple 

conclusion: the greater the nucleus size is the more close its shape to the circular one is (see also 

figure 4). This result is related to the fact that pair potentials ФАВ (characterizing the surface tension 

of the nucleus) are not interrelated with the crystallographic orientations of the lattice. 
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(a)  (b)  

(c)  (d)  

(a)  (b)  

(c)  (d)  

Fig. 3 Simulated microstuctures of the nanoalloy 

at different stages of the evolution: (a) – initial 

supersaturated nanoparticle, (b) – 10
7
 MCS, (c) – 

4⋅107
 MCS, (d) – 4.5⋅107

 MCS. The B-atoms are 

indicated by black points. Shell consists of C 

atoms. At the last stage the new phase nucleus is 

in the center of the nanoparticle. Parameters are 

taken as: X0=0.05, ФАА=ФВВ=-5⋅10
-20 

J, ФАВ=-

4.3⋅10-20 
J, ν0A=ν0В=ν0С=10

14
 s

-1
, ФСС=-5⋅10

-18 
J, 

Ntot=2000. 

Fig. 4 Fragments of evolution of the 

separating nanoparticle – ‘in situ’: from the 

initial stage of multiple nucleation until the 

last stage of coalescence and coagulation: (a) 

– initial supersaturated nanoparticle of 

composition X0=0.05, (b) – 2.5·10
7
 MCS, (c) 

– 10
10
 MCS, (d) – 5·10

10
 MCS. The B-atoms 

are indicated by black points. Shell consists 

of C atoms. Parameters: Ntot=5000, ФАВ=-

4.3⋅10–20
 J, ФАА=ФВВ=-5⋅10

–20
 J; ФСС=-

5.5⋅10–20
 J, ν0A=ν0В=10

14
 s

-1
, ν0C=0 s

-1
, 

X0=0.1. 

 

The kinetics in our MC simulations shows a nearly power law for average size <N> (6) from 

time, t (here, the MCS): 

<N>(t) – <N>(0)=α·t
β
,     (8) 

where β is the dynamic exponent and α is the coefficient of proportionality. The initial average 

cluster size <N>(0) is small (smaller than Nmin), so it may be taken as zero. The equation (8) is then 

rewritten as:  

<N>(t)=α·t
β
.      (9) 

We found that kinetic quantity β depends on the number of atoms in the treated system (figure 5 

and figure 6), so it is size-dependent. 

The MC simulations also allow us to investigate ‘in situ’ the time dependence of the number of 

new formed clusters in the nanoparticle. We see that at initial MCS, the number of new formed 

clusters increases up to a maximum, corresponding to the transition between the nucleation regime 

to coalescence and coagulation. At high MCS, the number of clusters tends to 1 (one nucleus of a 

thermodynamically given size). 

The rate of the relaxation process is clearly shown by the value of exponent β depending on 

Ntot (9). For the first time, we show that β is varied within the 0.05-0.5 range and depends on the 

number of atoms Ntot in the treated system. At high Ntot, β tends to increase. Also, we see the new 

and very important results: i) the smaller the system is the smaller the β is, that is the slower the 

relaxation process (figure 6) at last stages becomes, ii) the smaller the particle is the faster the first 

nucleation stage is (figure 5). It is worth noting that these effects are not equilibrium 

thermodynamic ones, they are kinetic. The first result is not obvious and even seems to be the 

‘opposite’ kinetic behaviour. We call it as “size-induced freezing effect” on kinetics. 
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Fig. 5 Average size <N> versus MCS for different 

values Ntot: Ntot=5000 (○) and Ntot=8000 (+). At 

high MCS, <N>(t) enters a saturation regime. 

Parameters: ФАВ=-4.3⋅10
–20

 J, ФАА=ФВВ=-5⋅10
–20

 J; 

ФСС=-5.5⋅10
–20

 J, ν0A=ν0В=10
14
 s

-1
, ν0C=0 s

-1
, 

X0=0.05. The simulations are averaged by 22 

independent program starts. 

Fig. 6 Averaged value of exponent β versus 

number of atoms Ntot – size-induced freezing 

effect for different temperatures T=150K (+), 

T=300K (∆) while other parameters are the 

same: ФАВ=-4.3⋅10
–20

 J, ФАА=ФВВ=-5⋅10
–

20
 J; ФСС=-5.5⋅10

–20
 J, ν0A=ν0В=10

14
 s

-1
, 

ν0C=0 s
-1
, X0=0.05. Each point is averaged 

over 22 realizations. 

 

Generally speaking, compared with the bulk materials, nano-sized ones are characterized by the 

fact that the ratio of the number of surface to volume atoms is not small and so one can expect that 

the diffusion should be induced by the surface effect of nanoparticles and be dominated by surface 

atoms of nuclei. At the same time it is well-known that the surface diffusion is usually faster than 

the bulk one (due to preferable places of defects). From this, the smaller the whole particle is the 

bigger the effective diffusion coefficient should be. This is shown, for example, by finding diffusion 

activation energy at different approaches: i) by molecular dynamics simulations of study the 

melting evolution of metal nanoparticle, ii) in the experimental diffusion results of nitrogen atoms 

into bcc Fe and Ag into Au nanoparticles, iii) due to thermodynamic approximation based on size-

dependent melting temperature [17-20]. We see that in our case, that is, in case of vacancy-

mediated diffusion and separation (solid-to-solid transition) in coated nanoparticles it is not so. 

Let us try to explain why for the smaller systems the nucleation stage is fast whereas coarsening 

is slow (figure 5). Our explanation is based on the existence of effective ‘bulk’ diffusion at the 

nucleation stage and on the size constraints at coarsening stage. The decreasing of the relaxation 

kinetics in the nanoparticle means that, in the framework of the present model, small volumes 

constrain the diffusion processes (effective diffusion coefficient D decreases) whereas the effective 

concentration of the vacancies is increased as compared with the larger volumes. 

For very short times vacancy has not yet visited all parts of the nanoparticle. So, for initial times 

the process should be dominated by the bulk diffusion of vacancy and atoms in the core part of the 

nanoparticle. The effective bulk diffusion coefficient should be proportional to vacancy 

concentration Cv (Cv=1/Ntot), correlation factor and jump frequency. From this, D∼Cv∼1/Ntot. 

Hence, the smaller the system is the bigger the effective vacancy concentration is, the bulk diffusion 

and initial stage − nucleation process are faster. This is verified in figure 5a, where parameters are 

taken as: ФАВ=-4.3⋅10
–20

 J, ФАА=ФВВ=-5⋅10
–20

 J; ФСС = - 5.5⋅10
–20

 J, ν0A=ν0В=10
14
 s

-1
, ν0C=0 s

-1
, 

X0=0.05. We see that the average size <N> curve for Ntot=5000 (○) is higher than for Ntot=8000 (+) 
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at the initial stage whereas at the last stage the dependences are opposite: <N>∼t0.313 for Ntot=5000 

and <N>∼t0.319 for Ntot=8000.  

On the other hand, one can estimate the diffusion coefficient of vacancy (or atoms) using the 

Einstein equation D∼<[r(t)−r(0)]2>⋅(4t)−1, where t is the diffusion time, r is the position of the 

vacancy (or an atom), <[r(t)−r(0)]2> is the mean square displacement. The vacancy starts the motion 

from the center so that r(0)=0. So for longer times of coarsening (which we present by formula (9) 

and compare in figure 5) we can assume for the moment that interface diffusion plays a key role. So 

in the coarsening process in a nanosystem, r(t) would be replaced by up estimation value R; that is 

maximal displacement is limited by the particle radius R. Hence, at long times D∼R2
/t or as 

estimation for our two-dimensional model D∼Ntot/t, that is proportional to the size of the 

nanoparticle and inversely proportional to the time considered. Thus, for two different sizes R and 

the same time, the effective diffusion coefficient during the coarsening in smaller system should be 

slower and it tends to zero, D→0, when t→∞. This is the case when thermodynamic constraints 

(size of the system, interaction potentials and initial set of parameters) suppress the kinetics of 

coarsening. 

Other arguments may be related to the fact that the probability distribution of the vacancy 

position is not uniform (correlation factor in diffusion coefficient D). However, we expect that an 

adequate explanation of these results is related to the interface diffusion and to size and atom 

composition dependence on the corresponding diffusion coefficient, which is not included in this 

discussion. A more quantitative statistical analysis is needed for quantitative understanding of the 

size effect on vacancy diffusion in the present model of decomposition in a nanoparticle. The 

corresponding analysis is going on for 3D MC sampling and will be presented elsewhere. 

Another surprising result of the present model is that the separation process goes much faster at 

low temperatures (figure 6). This result is also looks opposite to the common view according to 

which the rate of separation should be higher for higher temperatures. Assuming again that the 

present model follows the simple theory of a regular solid solution, we can understand such 

behaviour by investigating the temperature dependence and the criteria of mixing and separation. It 

is well known that the width of the gap at Helmholtz free energy g(X) dependence on composition 

increases with decreasing the temperatures. From this, the decrease of T leads to increase of 

supersaturation, that is, to increase of the bulk driving forces for separation. 

4. Summary and Concluding Remarks 

The present model clarifies the specific features of phase separation in nanovolumes. In accordance 

with the proposed model the power law for the mean size <N> of the new phase particles appears: 

<N>(t)=α·t
β
. The kinetic exponent β characterizes the rate of relaxation process and depends on the 

size of a nanosystem, temperature and composition. We obtained the new kinetic behaviour - size-

induced freezing effect: the smaller the system is the slower the separation process at coarsening 

stage is and the faster the nucleation stage is. 

Depending on the shell properties, the nucleation of a new phase may be either heterogeneous 

(on the external surface) or homogeneous (in the core of the particle). 

The development of a new three-dimensional model is now in progress in order to prove the 

scheme and results and in order to compare with the real experimental observation and satisfactory 

explanation of diffusion effects. Results of 3D model show the similar ‘freezing’ behaviour. 

The model introduced here may be useful in the analysis of the other phase transitions in small 

systems, in bulk nanocrystalline materials and closely related problems. 

References 

[1] T. Shibata , B. A. Bunker, Z. Zhang, D. Meisel, C. F. Vandeman II  and J.D. Gezelter: Jour. 

Am. Chem. Soc. Vol. 124 (2002), p.11989 

170 Diffusion and Diffusional Phase Transformations in Alloys



 

[2] R. Kozubski, S. Czekaj, M. Kozlowski, E. Partyka, K. Zapala: J.Alloys and Compounds 

Vol.378 (2004), p.302 

[3] S. Ramos de Debiaggi, J. M. Campillo  and A. Caro: J. Mater. Res. Vol. 14 (1999), p.2849 

[4] H. Yasuda  and H. Mori: Phys. Rev. Lett. Vol. 69 (1992), p.3747 

[5] K. Ivanova: Phys. Rev B Vol. 58 (1998), p. 1 

[6] G. N. Chesnut and Y. K. Vohra: Phys. Rev B Vol. 57 (1998), p.10221 

[7] C. Castellano, F. Corberi: Phys. Rev B Vol. 63 (2001) 060102 

[8] P. Frantzl, O. Pentrose: Phys. Rev B Vol. 50 (1994), p.3477 

[9] W. A. Jesser, R. Z. Shneck and W. W. Gille: Phys. Rev. B Vol. 69 (2004), p.144121 

[10] A. S. Shirinyan and А. M. Gusak: Phil. Mag. A Vol. 84 (2004), p.579 

[11] A. S. Shirinyan, M. Wautelet: Nanotechnology Vol. 15 (2004), p.1720 

[12] J. I. Frenkel: The kinetic theory of liquids. (Nauka, Leningrad 1975) 

[13] A. I. Rusanov: Phase equilibriums and surface phenomena (Leningrad: Chemistry1967) 

[14] H. Ulbricht, J. Schmelzer, R. Mahnke and F. Schweitzer: Thermodynamics of finite systems 

and kinetics of first-order phase transitions (BSB Teubner, Leipzig 1988). 

[15] A. S. Shirinyan, А. M. Gusak and P. J. Desre: Jour. Met. Nanocr. Mat. Vol. 7 (2000), p.17 

[16] A. M. Gusak and A. O. Kovalchuk: Phys. Rev. B. Vol. 58(2) (1998), p.1 

[17] Hu. Wangyu, Xiao Shifahg, Yang Jianyu, Zhi Zhang: The European Physical Journal B 

Vol. 45 (2005), p.547. 

[18] Q. Jiang, S. H. Zhang, J. C. Li: Solid State Communications Vol. 130 (2004), p.581 

[19] K. Dick, T. Dhanasekaran, Z. Zhang, D. Meisel: J. Am. Chem. Soc. Vol. 124 (2002), p.2312 

[20] W. P. Tong, N. P. Tao, Z. B. Wang, J. Lu, K. Lu: Science Vol. 299 (2003), p.686. 

Defect and Diffusion Forum Vol. 277 171


