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Abstract. The process of phase formation at the initial stage of the reaction diffusion and growth of 
a new phase particles - at the atomic level by applying the Monte-Carlo simulation of the crystalline 
nanoalloy is presented. The influence of initial composition on the kinetics of phase separation in a 
binary alloy with the fcc crystal lattice has been analyzed in detail. The dependences of various 
parameters of tire process - the average size of new-phase particles, volume of new-phase clusters, 
size distribution function, dispersion and supersaturation - on time have been calculated. The 
obtained results demonstrate the opportunity of a three-stage separation process at low initial 
supersaturation values and a two-stage separation at large initial supersaturation values. 

1. Introduction 
The greatest progress that was achieved during last decade in materials science research is related to 
the creation of micro- and nanostructured materials operational characteristics which was 
determined at a microscopic level. Then it is obvious that macroscopic results should be considered 
at a microscopic level. 

In a macroscopic bulk system, the first order phase transition occurs through the nucleation and 
the growth of particles of a new phase. Four consecutive stages are distinguished: 1) the nucleation, 
2) the stage of independent growth of particles of a new phase, 3) the intermediate stage, and 4) 
coalescence (or the so-called Oswald ripening stage). 

The final stage of phase transition is described by the Lifshits-Slezov-Wagner theory of 
coalescence. Coalescence is calculated only in the mean-field approximation and for infinitesimally 
small initial supersaturations, while the volume of the alloy is supposed to be infinitely large [1]. 
One might expect the volume fraction of new phase particles to influence the coarsening process 
and whole kinetics as well. Also, the problem of the initial stages description remains unresolved. 

One of the promising methods in this respect is the computer simulation of the above 
phenomenon which allows obtaining the sufficient statistics (about 106 atoms to be collected) and 
investigating the evolution of all parameters in detail.  

In this work we attempted to describe the process of phase formation at all stages of the reaction 
diffusion - at the atomic level by applying the three-dimensional (3D) computer simulation of the 
crystalline alloy (figure 1). Time method applied for studying the kinetics of the system relaxation 
was the method of Monte-Carlo computer simulation of the vacancy diffusion. We have constructed 
a kinetic Monte-Carlo model for the phase decomposition in a binary system with the fcc lattice and 
analyzed the alloy separation at every evolution stage of the system concerned. 

The paper is structured as follows. In the next section we describe the basic assumptions of MC 
method for the microscopic theory of diffusion and present the three-dimensional MC model of 
separating alloy. In section 3, we investigate the kinetics of the decomposition related to the 
influence of supersaturation. Concluding remarks are given in section 4. 
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2. Model 
Let us apply the fundamental concepts of the diffusion microscopic theory to alloys and select the 
most probable diffusion mechanism for metallic alloys. Usually the diffusion in the mixture 
consisting of two sorts of atoms is modelled by Kawasaki direct exchange dynamics. This is not a 
satisfactory representation of the diffusion in real alloys, where atoms can change places easily due 
to empty neighboring site [2-3]. In the present communication, we study the process of vacancy-
mediated phase separation in a system consisting of atoms of two different types, A and B, and 
describe the corresponding evolution of the process. In this instance we treat the case of a binary 
metallic alloy A1-CBBC with the initial composition C0 as a supersaturated system whereas a nucleus 
of a new phase will have another stoichiometry Cn=1 (pure B atoms). 

In order to calculate the configurational energy of the system, in which atoms were located at the 
lattice points, we used the Ising Hamiltonian, which took into account the energies of pair 
interatomic interactions only within the limits of the first coordination sphere [4]. A single vacancy 
was introduced into a spatial specimen with the fcc symmetry; the energy of interaction between 
this vacancy and other atoms was supposed to be equal to zero. The pair interaction potential ΦXY, 
where the subscripts X and Y can possess one of the values: A (for A atoms), B (for B atoms), or V 
(for vacancies), was assigned to each pair of the particles. In this case, the configurational energy of 
the whole system looks like 
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where the external summation is carried out over all N0 lattice points of the system, while the 
internal one is realized only over the points within the first coordination sphere of the i-th lattice 
point. 

Consider basic model of the vacancy-mediated diffusion. The activation energy for the diffusion 
hop, Q, is evaluated as follows. Let us assume (figure 2) that the energies of the initial and end 
positions of the atom in the lattice are different, while the barrier height E0 in the crossover point of 
potential energy relief is the same for all atoms [5]. The depth of the well, where the atom is 
located, depends on the atom’s nearest environment, that is the value Ei for the i-th atom can be 
determined within the first coordination sphere by Ising-type model: 
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Z=12 is the number of the vacancy’s nearest-neighbour atoms. The value of the activation energy Q 
for the microscopic diffusion of the X type atom (here X = А, В), moving from point 1 to point 2 
(figure 2), is given by the quantity: Q=E0-E1. In general, if the i-th atom adjoins the vacancy, 
activation energy barrier height for the diffusion jump of the vacancy towards i–th direction is 
expressed by: 

Qi=E0 – Ei.            (3) 
The residence time algorithm uses the ‘forced’ jump along the randomly selected i-direction. The 

probability of one diffusion jump along each direction is given by the ratio: 
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Here νi is the frequency of the atom-vacancy interchange in the i–th direction, j is the number 
adjacent to the vacancy atom. Having obtained the pi values, one finds the successful jump 
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direction by randomly generating R and comparing it with the pi, ν0i is the vacancy-i-atom 
exchange characteristic frequency [2-3,6]. The probabilities are normalized to unity. 

Therefore, the algorithm for simulating the vacancy diffusion is as follows: 
(i) The initial configuration of atoms is selected. The concentration of atoms is C0, and they are 

rigidly fixed at the points of the regular fcc crystal lattice, being randomly distributed over the 
latter. 

(ii) A vacancy is inserted (one of the fcc lattice points is designated as non-occupied). 
(iii) For the given vacancy position, probabilities (4) are evaluated for all possible jumps by 

calculating energies (2). Afterwards, according to the found probabilities the direction of the jump 
is selected randomly, by generating a random number R, and the interchange of the vacancy and the 
atom is carried out. 

 
 

  
 
Fig. 1. Schematic representation of 
the fcc lattice: grey circles – atoms of 
one sort, black circles – atoms of the 
other sort. A single vacancy was 
introduced into a spatial specimen 
with the fcc structure (white circle). 

 
Fig. 2. Sketch-model of the barrier for the diffusion 
jump: for the atom jumping from position 1 into 
position 2. The activation energy Q, for 1→2 diffusion 
jump, is determined as the difference E0 – E1. The 
smaller the value E1 is the larger the energy barrier 
Q=E0 – E1 for the diffusion becomes. 

 
The obtained results were used for plotting the dependence of the concentration on time and the 

distribution function of clusters over their dimension ƒ(r), i.e. the number of nuclei with the r size. 
The model allows finding the most important characteristics of the distribution function such as the 
average size (radius) ‹r› and the time-dependent number N≡N(t) of the new phase clusters, the 
dispersion, the slope, and the peak sharpness of the size distribution function. The results obtained 
for the function ƒ(r) can also be compared in the space of average quantities, where the part of the 
parameter is played by the ratio between the new phase particle radius r(t) and the average radius 
‹r› rather than the radius r itself. Furthermore, the average volume of the particles in the new phase 
is determined by the formula: , where NNNV N

n n /1∑ =
>=< n is the number of atoms in the n-the 

cluster (n=1…N), and the size of the cluster rn is defined as 3
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normalized dimension of the new phase ><= rru nn /  and the corresponding size distribution 

function ƒ(un)≡ƒ(u). The total volume of the new phase is found by the formula:  
and the volume fraction of the new phase can be determined as ρ=V
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and the peak sharpness Kr of the function ƒ(u) are determined by the formulas: 
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Here 1=u . 
In the following analysis, only those particles, in which one atom B was surrounded by not less 

than Nmin=10 atoms of the same sort, were attributed to the new phase. Such a choice of the minimal 
number of surrounding atoms Nmin was relative. In our case, the given value for Nmin was caused by 
the alloy model with the fcc crystal lattice, where Z=12. 

We also determine the supersaturation in the alloy during the phase separation process as the 
function of the MCS. For this purpose, we have to know the composition of B component outside 
the particles of the new phase, i.e. in that portion of the alloy, where there were no nuclei of the new 
phase. Hereinafter, we use the notation C for this composition. 

3. Results and Discussion 
Computer experiments were carried out for the fcc crystal lattice composed of 1 million atoms 

(the spatial analogs of the 100×100×100 lattice). The periodic Born-Karman boundary conditions 
were applied along all the axes. The model parameters were the following: the temperature 
T=300K, the pair interaction energies ФAA=ФBB= -2×10-20 J and ФAB=-1.8×10-20 J and the 
component jump frequencies - voA=1×1013 Hz and voB=3×10 Hz. B

13 

The obtained results demonstrate the essential variation of the f(u) function behavior 
depending on the initial supersaturation value. As a matter of fact, the cases of low and high initial 
supersaturations C0 may be conventionally distinguished. The detailed evolution of the distribution 
function f(u) at all stages of decomposition is discussed in [5], where we’ve shown that in case of 
low initial supersaturation the size distribution function first quickly becomes exponential and, 
afterwards, bimodal and at least, at the final stage, the distribution function becomes unimodal one. 
At high initial supersaturation values, the behavior of the distribution function differs drastically. 
Namely, the distribution function remains unimodal, and its maximum moves towards larger 
dimensions [5]. 

In this communication we draw attention to the basic characteristics evolution, namely, D, <r>, 
N, Vtot, E. We observe a three-stage decomposition process in a binary alloy at low initial 
supersaturation values (nucleation, slow growth, and coalescence) and a two-stage decomposition at 
large initial supersaturation values (first, the emergence and quick growth of the new phase occur 
simultaneously; afterwards, the slow coalescence and coagulation take place, simultaneously as 
well). The reduction of C0 results in slowing down the whole process of phase separation (figures 3, 
4 and insets). 

Let us consider the process of decomposition in greater detail. Figure 4 demonstrates that the 
reduction of the initial supersaturation brought about the appearance of maxima in the evolution 
plots N(t). The maximum point, corresponding to the maximal number of the new-phase particles, 
shifted towards larger times. The appearance of the maximum showed that the process of the new 
phase nucleation took place. At this stage we see nano-, meso- and macroparticles of the new phase. 
Then, depending on the value of the supersaturation C0, the whole process follows either through 
one subsequent stage (quick transition to the stage of coalescence and coagulation) or through two 
subsequent stages (quick transition to the growth, and coalescence). 

For the description of the initial stage to be complete, the evolution of the distribution function 
dispersion for various values of C0 is shown in figure 3. In accordance with the model, the phase 
separation began as the particle size dispersion increased. Again, we see that evolution of D 
depends on the initial supersaturation C0. 

Such a scenario explains the change of the average radius with time for various initial 
concentrations (figure 5). Another characteristics, such as mean composition of the B component 
around the new formed nuclei, C, are shown in figure 6. 
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Fig. 3 The dispersion D as the function of the MCS 
number for ious initia values of 
supersaturation: C

var l 

point 
is averaged over 20 independent realizations. 

C

realizations. 
 

0=0.1(×), C0=0.025(◊), 
C0=0.0175 (∇), C0=0.015 (�). Other parameters 
are the same and indicated in the text. Each 

 
Fig. 4 Evolution of the clusters number N(t) 
during the separation for different values of 
the initial composition 0: C0=0.1(×), 
C0=0.05(o), C0=0.025(◊), C0=0.0175 (∇), 
C0=0.015 (�). Each point is averaged over 20 

0 10000 20000 30000 40000MCS
0

4

8

12

16

2

6

10

14
<r >

4000 8000 12000 16000 20000MCS
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1 C

0 10000 20000 30000 40000
MCS

0.004

0.008

0.012

0.016

0.02 C

 
 
Fig. 5 Average size <r> versus MCS for different 
values of C0: C0=0

s are 
averaged by 20 independent program starts. 

 Each point is 
averaged over 20 realizations. 

.1(×), C0=0.05(o), C0=0.025(◊), 
C0=0.0175 (∇), C0=0.015 (�) while other 
parameters are the same. The simulation

 
Fig. 6 Dependences of the concentration in the 
parent phase on time during the decomposition 
process: C0=0.1(×), C0=0.05(o), C0=0.025(◊), 
C0=0.0175 (∇), C0=0.015 (�).
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Figures 5-6 confirm our statement about the dependence of the decomposition stage number on 
the magnitude of the initial supersaturation. The results testify to the fact that the higher C0 is, the 
faster the alloy relaxes to the equilibrium state and approaches the stage of coalescence and 
coagulation. 

4. Summary and Concluding Remarks 
The obtained results demonstrate the opportunity of a three-stage decomposition process in a binary 
alloy at low initial supersaturation values (nucleation, slow growth, and coalescence) and a two-
stage decomposition at large initial supersaturation values (first, the appearance and the quick 
growth of the new phase occur simultaneously; afterwards, the slow coalescence and coagulation 
also take place simultaneously). 

The results prove that the higher the initial supersaturation is, the faster the alloy relaxes to the 
equilibrium state and approaches the stage of coalescence and coagulation. 

The new three-dimensional model based on another assumption of barrier for the diffusion jump 
(figure 2) was done by the authors in order to prove the scheme and results and in order to compare 
it with the real experimental observation and satisfactory explanation of diffusion effects. Results of 
the corresponding 3D model show the similar behaviour and will be discussed elsewhere. 

Thus, the proposed approximation considerably improves our understanding of the mechanisms 
of nucleation and growth of the new-phase particles in a metastable system. The analysis carried out 
in this work is to be continued by the studies of the kinetics of the initial stages of the phase 
separation in a multicomponent alloy, provided several new phases can emerge. The corresponding 
simulation is being in progress now. 
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