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Abstract
We present a description of the evolution of a polymorphically transforming metal nanoparticle
ensemble subjected to a temperature cycling with constant rates of temperature change. The
calculations of the time dependence of the volume fraction of the new phase show the existence
of size-dependent hysteresis and its main features. The statistical analysis makes it possible to
introduce and determine the size-dependent superheating limit and supercooling limit.

1. Introduction

Nanopowder particles have found wide technological applica-
tions in modern industry, and their physical properties have
become one of the critical concerns for new applications [1].
From this point of view the thermal stability of such particles
is a subject of intense contemporary interest [2]. The synthesis
of nanoparticles is not a simple task, however, numerous
techniques have been developed for it [2–5]. Yet, despite
the widely acknowledged importance, the understanding of
the specific features of the evolution of phase transitions
and hysteresis behaviour in such systems is far from being
complete [6].

First-order phase transition experiments under changing
external fields exhibit hysteresis phenomena related to
supercooling and superheating [7, 8]. For example, a
well-expressed heating–cooling hysteresis of Bi nanoparticles
embedded in a bulk alkali germanate glass has been studied
by high resolution transmission electron microscopy. It was
shown that it can be related to the melting and solidification
of the Bi nanoparticles. The temperature width of the
hysteresis cycle is found at about 40% of the bulk Bi melting
temperature [14].

Different results are reported in the literature concerning
the width of the hysteresis loop. For example, the width of

the hysteresis loop for a polymorphic transition in the CdSe
nanostructured system turns out to be almost independent
of nanocrystal size [9, 10]. Other kinetic models and
simulations for the ensemble of binary nanoparticles predict
a considerable increase in the width of the hysteresis loop
with increasing particle size as well as a decrease. Which of
the mentioned effects will occur depends on the mechanism
of the nucleation of the new phase [11–13]. The individual
nucleation events observed in nanoscale vapour–liquid–solid
growth for the Au–Si system provide us with a picture of
reproducible heterogeneous nucleation of catalyst particles
at the edge of the droplets [15]. Hereby the study of
critical supersaturation required for nucleation does not give
observable size effects. The melting behaviour of Ge
nanocrystals embedded within SiO2 is evaluated using in
situ transmission electron microscopy. The melting-point
hysteresis is observed at about 17% and is nearly symmetric
about the bulk melting point [16].

In the study reported here, first-order phase transitions in
ensembles of nanoparticles are discussed, specifically targeting
polymorphic transitions in Fe nanoalloys undergoing temper-
ature cycling. Dilatometric curves of the transformations α-
Fe (bcc) ↔ γ -Fe (fcc) in sintered powders of industrial
particle sizes, 10–100 μm, produced by comminuting 0.08% C
steel welding wire in an eddy mill, show that the specimens
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Figure 1. Model of complete α-Fe ↔ γ -Fe phase transitions in
nanoparticles due to heterogeneous nucleation, profile of phases
along the diameter: on the left side—initial nanoparticle with
α-phase inside, on the right side—the same particle after the
polymorphic α-to-γ transition. N0 is the number of atoms in a given
particle of radius R with the lens-type new phase (grey colour).

sintered from the coarse powder are characterized by the
largest temperature hysteresis loop and the least permanent
compression [17]. In our previous analysis of the behaviour
of such Fe nanopowders, nucleation of the new phase was
assumed to occur inside and at the external boundaries of
the existing nanoparticles. It was assumed, in addition, that
the aggregates of the new phase are of spherical shape for
both considered cases [18]. The kinetics can be expected to
proceed in a different way if the nanoparticles transform via
different modes, for example, via a nonspherical heterogeneous
mode. Experiments show that there are many other cases
where the growth of the new phase occurs at the surface of
the nanoparticle and looks like epitaxial growth with lens-type
new phase [15]. That is the case we deal with in the present
paper.

First we develop a thermodynamic model of heteroge-
neous phase formation in an isolated nanoparticle (section 2),
then we introduce the kinetic numerical model. The solution of
the model predicts the existence of a size-dependent hysteresis
and its peculiarities (section 3). Section 4 contains the
summary and conclusions.

2. Thermodynamic analysis

Let us consider the case of phase transformations between the
γ -Fe and α-Fe crystallographic phases (figure 1). Fe can exist
in three main crystallographic modifications: α-phase (bcc)
within the temperature interval T < 1183 K, γ -phase (fcc)
for 1183 K < T < 1665 K and δ-phase for T > 1665 K up to
the melting point.

Let N0 be the number of atoms in one particle with radius
R. At fixed temperature T , the total Gibbs free energy, Gα of
the initial α-Fe-phase nanoparticle is given by

Gα = N0g∞α + Sασα. (1)

In this equation, g∞α is the bulk Gibbs free energy per atom of
the α-phase, σα is the specific surface energy (energy per unit
of area), Sα = 4π R2 is the surface area.

In a similar way, one can write the Gibbs free energy of
the transformed γ -Fe-phase nanoparticle:

Gγ = N0g∞γ + Sγ σγ . (2)

Here g∞γ is the bulk Gibbs free energy per atom of the γ -
phase, σγ is the specific surface energy and Sγ = 4π R2 is the
surface area of the γ -phase.

When the new γ -Fe phase nucleates, the Gibbs free
energy dependence Gαγ has to be written for the two-phase
configurations shown in figure 1. The change of the Gibbs free
energy �G(Nγ ) of the nanoparticle related to the formation of
a new nucleus is then:

�G(Nγ ) = Gαγ − Gα = Nγ (g∞γ − g∞α) + S′
γ σγ

+ Sαγ σαγ + (S′
α − Sα)σα. (3)

Here, Nα and Nγ = N0 − Nα are the numbers of atoms
in the α-Fe and γ -Fe phases, respectively; σαγ and Sαγ are
the corresponding specific interfacial energy and area at the
boundary of the α-Fe and γ -Fe phases. The quantities S′

γ

and S′
α = Sα − S′

γ , are the external surface areas of the
corresponding phases of the transforming α+γ -phase particle.

Let us now visualize the dependence of �G on Nγ at
different fixed values of T and N0. Taking into consideration
the set of parameters published in [19–26], it is possible to
evaluate the Gibbs free energy of the α-Fe ↔ γ -Fe transitions
at isobaric conditions: σγα = 8 × 10−2 J m−2, σα =
2.21 J m−2, σγ = 2.17 J m−2, the volume density of atoms n =
8.58 ×1028 m−3, the driving force of the transformation �g =
g∞γ − g∞α = 0.003 65kBT 2 − 10.3952kBT + kB7191.1424 J.
Here kB is the Boltzmann constant.

The surface areas Sα , Sγ , S′
γ , S′

α , Sαγ are taken as
temperature independent. In the following Sαγ is obtained
by fixing the size R, the number Nγ , and the corresponding
determination of all reasonable radii r of the α–γ interphase
surface and direct calculation Sαγ = πr 2 (figure 1). Hereby
one must distinguish two cases: (i) when the volume of the new
phase is smaller than half of the volume of the nanoparticle
and (ii) vice versa. The geometry gives: 1/3π(R −√

R2 − r 2)2(2R − √
R2 − r 2) = Nγ /n for case (i) and

4/3π R3 − 1/3π(R − √
R2 − r 2)2(2R − √

R2 − r 2) = Nγ /n
for case (ii). The values S′

γ , S′
α are defined by a system of

equations taking into account the conservation law Nγ + Nα =
N0: S′

γ = 2π(R2 − R
√

R2 − r 2) for case (i) and S′
γ =

4π R2 − 2π(R2 − R
√

R2 − r 2) for case (ii).
In this work we shall restrict the discussion in the

temperature interval 900–1400 K near the transformation
temperature in bulk state T = 1183 K. The results of the
computations are shown in figure 2. The different curves
are drawn at the following conditions: the phase transition is
impossible at T = 1100 K; the α-to-γ transition may take
place at T = 1160 K and for higher temperatures. Say, for
T = 1183 K (transformation temperature in bulk state) the
nucleation barrier is about 16.5kBT at the critical size of the
new γ -phase nucleus corresponding to Nγ = 504 atoms.

Thus, the thermodynamics of phase transformations of
nanomaterials deviates considerably from the respective course
in the bulk [27–31]. Compared with bulk cases, there exists the
possibility of the existence of a metastable phase (for example,
at Nγ = 3000 and T = 1130 K in figure 2) instead of the
stable one due to a nucleation energy barrier, which could
be employed in nanotechnology as a means to improve the
physical properties of materials.
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Figure 2. Phase transition energy change versus nucleus size
(number of atoms in a γ -Fe) at different fixed temperatures and
numbers of atoms in the particle N0 = 3000. The zero point denotes
the initial α-phase; the last points of all curves correspond to the
γ -phase particle (figure 1).

3. Kinetic model of polymorphic transitions at
temperature cycling of a nanopowder

Let us now consider the Fe nanopowder and assume that
the nanoparticles are characterized by a monodisperse size
distribution. Such an ensemble of nanoparticles is subjected
then to heating and cooling. First, we start from low
temperatures (figure 1) and increase the temperature with a
constant finite rate (heating). Then we stop the temperature
change at some point and decrease the temperature (cooling)
at the same rate. One cycle refers to a complete change of
temperature from some initial value back to the same point
(figure 3).

We introduce a size distribution function f (Nγ , t) ≡
f (Nγ ) being equal to the number of new phase nuclei
consisting at time t of Nγ atoms. The evolution is described
by the kinetic equation of the theory of nucleation–growth
processes:

∂ f (Nγ )

∂ t
= f (Nγ − 1)ν+(Nγ − 1) + f (Nγ + 1)ν−(Nγ + 1)

− f (Nγ ){ν−(Nγ ) + ν+(Nγ )}. (4)

The frequencies of attachment ν+(Nγ ) and detachment
ν−(Nγ ) of atoms to a new phase cluster of size Nγ are
interrelated due to the balance condition: ν−(Nγ ) =
ν+(Nγ ) exp[�G(Nγ )−�G(Nγ −1)

kBT ]. The Gibbs free energy change
�G(Nγ ) may be expressed as a function of time (via the time
dependence of temperature). The expression for the frequency
ν+(Nγ ) is obtained by considering the growth of the new γ -
phase cluster that has to result from a series of monomolecular
additions to the nucleus. The interrelations between ν+(Nγ )

and ν−(Nγ ) are essentially much more dependent on the
temperature in exponential factors �G(Nγ )/kBT than the
one in pre-exponential values. One usually distinguishes
so-called diffusion-controlled (bulk) and kinetic-controlled
(surface) processes. In the case of nanosized particles the

Figure 3. Representation of a polymorphic transition in a
nanopowder during temperature cycling: from left to
right—ensemble of particles of N0 size before transformation and the
same powder after γ -Fe nucleation. It is assumed that in each
nanoparticle only one aggregate of the new phase can be formed.

surfaces have to play the key role. That is why the coefficient
of aggregation ν+(Nγ ) will be taken as that of the kinetic-
controlled process [32] and is assumed to be proportional to the
probability of molecular additions and the α − γ interface area
Sαγ , that is to the number of atoms at the interface boundary
Nαγ : v+(Nγ ) = DNαγ , Nαγ = Sαγ n2/3. Hereby the value
n−2/3 represents the surface area related to one atom. D is
an effective diffusion parameter of the material in the vicinity
of the α–γ interface boundary. In the following, without
restricting the main results, D is taken as constant. It can
be estimated due to the phonon frequency: D ∼ kBT/h ≈
1013 s−1. Here the temperature is estimated as T = 1000 K
and h is the Planck constant.

The conservation of the number of particles is included
in the following boundary conditions for the size distribution
function f (Nγ , t) of the new phase:

f (Nmin, t) = W −
Nmax∑

Nγ =Nmin+1

f (Nγ , t),

f (Nγ , t = 0) =
{

W, Nγ = Nmin

0, Nγ 	= Nmin

∂ f (Nmax, t)

∂ t
= f (Nmax − 1, t)v+(Nmax − 1)

− f (Nmax, t)v−(Nmax),

(5)

where Nmin is the minimal number of atoms in the new phase
nuclei, Nmax = N0 is the maximal possible number of atoms in
each particle, W is the number of particles in the nanopowder.

One can describe the volume fraction ρ of the new phase
in the process of temperature cycling with different fixed rates
of change of temperature υ = |dT/dt| assuming different sizes
N0 of the particles in a powder where the transition occurs:

ρ =
∑Nmax

Nγ =Nmin
Nγ f (Nγ , t)

N0W
. (6)

If we stop the cycling at some temperature then the system
relaxes to the equilibrium state in which some particles will
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(a)

(b)

Figure 4. Volume fraction versus temperature for the fixed rate
υ = 0.08 K s−1 between 900 and 1300 K: symbol ‘◦’ denotes the
case N0 = 1000, ‘+’—N0 = 2000, ‘�’—N0 = 4000,
‘×’—N0 = 8000. The solid curve in (a) is the equilibrium values ρeq

for each fixed temperature and zero rate υ = 0.

be in single-phase states and the others in two-phase states;
the equilibrium size distribution feq(Nγ ) and the equilibrium
volume fraction ρeq are reached. The number of particles,
feq(Nγ ) ≡ feq(Nγ , T ), may be found by the Boltzmann
distribution in a statistical mechanical sense, so that one can
write:

ρeq =
∑Nmax

Nγ =Nmin
Nγ feq(Nγ , T )

N0W
,

feq(Nγ , T ) = W
∑Nmax

N=Nmin
exp(−�G(Nγ , T )/kT )

× exp(−�G(Nγ , T )/kT ).

(7)

The constants for numerical simulation are: D = 2 ×
1012 s−1, Nmin = 1, W = 1010.

4. Size-dependent hysteresis of α-Fe ↔ γ -Fe
transformations

The change of the volume fraction ρ of newly formed γ -
Fe particles in temperature cycling is presented in figure 4.
As one can see in figure 4(a), the temperature cycling
900 K ↔ 1300 K leads to a loop-like ρ(t) curve. Let us
introduce as a simple phase transition criterion in the kinetics
of the considered process the condition that the transition is
performed when half of the volume is transformed, that is
when ρ = 0.5 is reached. This criterion determines the
value of the temperature of direct transition TR at the right
branch of the hysteresis loop (during heating) and similarly,
the temperature of the reverse transition TL, at the left branch
of it (during cooling). The difference TR − TL is the width
of the hysteresis loop, which is a function of size and the rate
υ (figure 4(b)). The full curve ρ represents the equilibrium
values ρeq found via equation (7) for each fixed temperature
and zero rate υ = 0. As far as we know, the size-dependent
hysteresis loop is observed in the modelling of the kinetics of
a heterogeneous transformation of Fe powder here for the first
time.

If one also introduces as a statistical phase transition
criterion for the equilibrium volume fraction of the new phase,
ρeq = 0.5, then one obtains the temperature of this transition,
Teq, related to the equilibrium distribution, feq(Nγ , t). Hereby
the specific value of the width of the hysteresis loop can be
found as δ = (TR−TL)/Teq and presented in the corresponding
phase diagram as a function of the sizes and rates υ (figure 5).

Statistical generalization of the presented results for
different sizes and rates allows one to introduce the notion of a
‘size-dependent superheating limit’ δR = (TR − Teq)/Teq and
‘size-dependent supercooling limit’ δL = (Teq−TL)/Teq. Both
values can be defined in a similar way.

It is important that the statistics is characterized by a
nearly linear dependence in logarithmic scales, that is:

δ = k(υ) ln(N0) + a1(υ),

δR = kR(υ) ln(N0) + aR(υ),

δL = kL(υ) ln(N0) + aL(υ).

(8)

Hereby the angles of the slopes of these lines are well
defined. Formally, the following conditions must be fulfilled:
k(υ) = 0.004 42 ln(υ) + 0.0663, kR(υ) = 0.002 77 ln(υ) +
0.0216, kL(υ) = 0.000 97 ln(υ) + 0.043 89. It is worth noting
that the fitting formulae for slopes are found for the curves δ

versus N0 at the same rate, υ. However, due to the fact that
the approximations depend on the forth and back temperatures
of the phase transition in Fe nanopowder, it has limitations
at large rates υ and big sizes and is useful for nanometric
intervals and small rates, υ. Unfortunately, it is not feasible
to go to larger sizes or rates due to the fact that for higher
temperature intervals δ-Fe phase becomes favourable (1665 K
for bulk case) and the driving force of the phase transition must
be correspondingly redefined.
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(a)

(b)

(c)

Figure 5. The width of the thermal hysteresis loop versus the size of
particles in a nanopowder (a), the size-dependent superheating limit
δR (b) and the size-dependent supercooling limit δL (c) as functions
of sizes.

5. Concluding remarks

The theoretical and computer experimental findings of the
present paper put new insight into the intensively discussed

topic of size-dependent phase transitions and hysteresis
phenomena in nanomaterials. In the present paper a model of
polymorphic phase transformations in a Fe nanopowder under
temperature cycling is presented. The thermodynamic relations
between the energy of transition and the size of nanoparticles
were derived theoretically.

For finite rates of temperature changes, υ, one observes
size-dependent hysteresis loops. The results of thermodynamic
and kinetic approaches show that the size of nanoparticles has
a remarkable effect on the kinetics of the transformation. The
notions of the ‘size-dependent superheating limit’ and ‘size-
dependent supercooling limit’ were introduced and statistically
formulated. Statistical averaging results in a linear dependence
of the width of the hysteresis loop on the logarithm of the
number of atoms in the nanopowder particle.

Finally, we would like to point out that the investigations
presented in the paper are devoted to the problem of solid–
solid first-order phase transition in nanovolumes. Other
intriguing extensions of the present work should involve the
cases of (i) melting and solidification of multicomponent
metallic nanoparticles and (ii) competitive formation in the
nanoparticles of two and/or more phases with different
stoichiometries. The mentioned problems based on a similar
method will be discussed in forthcoming publications.
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