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Abstract. The influence of thermodynamic constraints like the size, depletion, surface tension and 

kinetic constraints like energy barrier for diffusion on nonsteady separation kinetics in binary 

nanopowder is investigated. Here we present a numeric analysis of size hysteresis and its 

peculiarities using the standard kinetic equation approach. 

1. Introduction 

The kinetics of phase transitions in nanofilms or nanoparticles is interesting from theoretical point 

of view as well as from experimental one. (For example, rapid heating and cooling by laser or 

needle are used for the preparing of computer disks during which the phase transition appears). 

If a nanosystem is quenched into the two-phase region then in addition to size effect the 

depletion of the surrounding parent phase may occur because of the difference in compositions of 

the parent phase and ‘new born’ phase. When one extrapolates this argument to nanomaterials under 

the different external conditions, one concludes that their thermodynamic and kinetics should differ 

from the one of bulk material. 

In earlier thermodynamic analysis depletion was investigated. It was shown that it results in the 

existence of critical system volume [1-4]. At the same time the separation kinetics in nanosized 

systems are not yet well understood. Experimental results on the effect of size on kinetics behaviour 

of phase transitions in alloys have been obtained in a few works [5]. 

Recent results on kinetic analysis of first order phase transitions in nanovolumes demonstrate 

hysteresis phenomena [6]. In present study we will continue to solve this problem. The treated 

system is a nanopowder of equal size particles. First, we start from the single phase state at high 

temperature T and let T decrease. Then we stop T at some point, when an alloy is quenched into the 

two-phase region, and change the direction - increase T with the same rate. The present work is 

aimed at the study of the kinetic ‘decoding’ of forth and back transition during the temperature 

cycling. This analysis is done in the frame of kinetic equation approach. In particular, we study the 

evolution of the volume fraction of the new phase and illustrate the hysteresis phenomenon in 

nanopowder related to finite size and depletion effects. 

2. Model 

According to our simplified model the single spherical nucleus of new intermediate phase will form 

inside each spherical particle of supersaturated solid solution taken at initial concentration C0 

(Fig. 1) of specie B. 

Let us introduce finite rates of temperature changes during the temperature cycling (T will 

change in time as linear function with constant rate dT/dt=const for cooling and heating). 

First, we decrease the temperature (cooling) starting from high values T at initial single-phase 

state. Then we stop the temperature at some point when an alloy is quenched into the two-phase 

region and change the direction - increase the temperature (heating) with the same rate until starting 

point is reached. Schematically circling (a)→(b), (b)→(a) is presented in Fig 1. The corresponding 

“kinetic decoding” of these transformations is made for a binary system containing of A and B 
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components. Hereby the new thermodynamically advantageous phase has strong stochiometry 

(composition in new phase is equal to C1=0.5, C1≠C0, C1>C0). In this case the concentration (and 

the number N) of component B coincides with the concentration (and the number N) of structure 

units AB building the new stoichometric phase. 

The Gibbs energy per atom for parent and the new phases are taken as follows [6]: 

( ) ( ) ( ) ( )( )CCCCkTCTg o −⋅−+⋅=∆ 1ln1ln, ,  

( ) kTgTg α+∆=∆ 11 , (C=C1). (1) 

Here α and ∆g1 are parameters determining temperature-dependent behaviour of bulk driving force, 

k is the Boltzmann constant, T – absolute temperature, ∆go(T,C) is the Gibbs free (mixing) energy of 

the parent supersaturated phase, ∆g1(T) is the Gibbs energy of formation of the new phase 1. 
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Fig. 1. Schematic representation of separation in 

nanopowder during the temperature circling: (а) – 

ensemble of particles of concentration C0 before 

transformation, (b) – the same particles after the 

transformation; Cp – concentration of ambient 

parent phase after the nucleation. 

Fig. 2. Gibbs free energy ∆G dependence on 

the number of structure units N in the 

nucleus for different temperatures provided 

other parameters are fixed. Parameters are 

presented in the text. 

 

The conservation law leads to the depletion of the surrounding parent phase. In two-phase state 

(case (b) in Fig. 1) the every particle of the nanopowder has the own concentration Cp≡Cp(N) in the 

parent phase: 
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where N0 is the numbers of atoms in the single particle, N is the number of structure units in new 

phase nucleus. 

The change in Gibbs free energy (∆G≡∆G(N,T)≡∆G(N)) of one particle consisting of new phase 

cluster embedded in the ambient parent phase is defined by: 
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where ( ) 3/23/1
3/43 −= nB σπ  is the coefficient of the surface energy contribution taken independent 

on size N and temperature T, σ is the specific interphase energy on parent phase-nucleus interface. 

The typical temperature-dependent ∆G curves are presented in Fig. 2 for the given set of 

parameters: C0=0.3, C1=0.5, N0=1000, ∆g1=–4.5·10
-20

 J, α=2.3, B=3·10
-20

 J. 

Cp 

C0 
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In the following we shall calculate the size distribution function f(N,t) – the number of droplets 

of the new phase consisting of N structure units AB at moment t. The evolution of ensemble of 

clusters formed by nucleation and growth processes may be described by kinetic equation and it 

reads [2,7]: 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )NvNvtNfNvtNfNvtNf

t

tNf
−+−+ +⋅−+⋅++−⋅−=

∂

∂
,1,11,1

,
. (4) 

The frequency ( )Nv+  is the average number of incorporated structure units into a cluster of size 

N, while ( )Nv−  indicates similarly the rate of detachment processes. The principle of detailed 

balancing yields the condition [7]: 

( ) ( ) ( ) ( )







 −∆−∆
⋅= +−

kT

NGNG
NvNv

1
exp . (5) 

The value ( )NG∆  is determined by Eq. 3. Further the quantity ( )Nv+  will be described as 

( ) 3/2
NCDKNv p ⋅⋅⋅=+  [7]. Hereby the temperature-dependent coefficient of diffusion D of 

segregating B – specie in the ambient phase in the vicinity of the nucleus of the new phase obeys the 

Arrhenius law: ( )kTQDD /exp0 −⋅=  with the activation energy of diffusion Q≈18 kTm (Tm – 

melting temperature, Tm=1200 K). So in our next consideration we use new nondimensional 

variable for time: tDK ⋅⋅= 0τ . 

The conservation of number of particles results in boundary conditions for the cluster size 

distribution function f(N,t). So one may write: 
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where Nmin is the minimal number of building units in nuclei, Nmax=N0C0 is the maximal possible 

number of structure units in each particle, Z is the number of particles in nanopowder. Because of 

constraint on the number of atoms in the nucleus of new phase 1 the size distribution function on 

the right boundary N=Nmax was taken zero (supply of specie B is absent): ( ) 0,max =τNf . 

The main task of presented kinetic model is to describe the volume fraction ρ of the new phase 1 

during the temperature cycling of the isolated nanoparticles ensemble. This value is determined by 

the formula: 

( )
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Actually, we will show evolution of volume fraction ρ in the process of temperature cycling from 

high T to low T (see Fig. 2) with fixed constant rate υ=dT/dτ, different sizes N0 of particles, 

different thermodynamic and kinetic parameters of the system. 

When the ensemble of nanosize particles is at equilibrium the probability of fluctuation is given 

by the theory of thermodynamic fluctuations. The equilibrium distribution function 

( ) ( )τ,, NfTNf eqeq ≡  may be found by Boltzmann dependence [8]. It yields also the equilibrium 

value of volume fraction ρeq: 
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Here feq(N,T) coincides with the number of particles in nanopowder in which the new phase 

nucleus consists of N structure units AB. 

3. Effect of Size and Depletion on Hysteresis 

Numeric calculations in this paragraph have been realized for next set of parameters: C0=0.3; 

C1=0.5; Nmin=2; Z=10
10

; ∆g1=–4.5·10
-20

 J; α=2.3; B=3·10
-20

 J, Q=18 kTm, υ=5·10
-13

 K. The number 

of atoms N0 in each particle, temperatures T, rates υ, activation energy Q and surface energy 

coefficient B will be pointed separately in each experiment (if they differ from above mentioned). 

Consider the evolution of size distribution function ( )τ,Nf  and ρ. For finite rate of temperature 

changes one should observe hysteresis behaviour for ρ presented below. The temperature will 

change in time with constant rate υ from 1100 K to 800 K and back. Here, at low T, the evolution of 

( )τ,Nf  function becomes very slow process because of the temperature-dependent D (freezing 

effect). 

Let us trace the influence of sizes of the system on hysteresis loop (Fig. 3). The hysteresis shows 

that the evolution of the size distribution function ( )τ,Nf  don’t keeps pace with respect to the rate 

of changing of the equilibrium distribution function ( )τ,Nf eq . Hereby, it is appeared that the 

greater is the size of a system, the greater is the effective width of the hysteresis loop at the same 

rate υ. (The less is the size of particles then is the less the effective width of the hysteresis loop.) 

For the first time, as far as we know, the tendency to narrowing and disappearing of hysteresis 

with a decrease of the size of a system (at a given rate of change of external parameters) is observed 

(Fig. 3). 
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Fig. 3. Effect of size on hysteresis: loops for the 

fixed rate υ=5·10
-13

 K of temperature cycling 

between 1100 K and 800 K and different number 

of atoms in the particles: N0=1000, N0=3000. 

Solid lines characterize equilibrium statistic 

values ρeq which are found by Eq. 8. 

Fig. 4. The demonstration of the influence of 

thermodynamic factor B (the value of interphase 

tension) on hysteresis. The simulation is done 

for the process of temperature cycling at same 

rate υ=5·10
-13

 K, fixed N0=1000, Q=18 kTm and 

the same other parameters. 

 

In the framework of our model the relaxation processes may be considered as examples of 

thermodynamic (due to the Gibbs free energy barrier) controlled and kinetic (because of the 

activation energy Q for the diffusion jump across the parent phase-nucleus interface) controlled 
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processes. The analysis of hysteresis dependence on thermodynamic and kinetic parameters allows 

one to distinguish the influence of thermodynamics on hysteresis from the influence of kinetics 

factors on hysteresis. Summarizing we may conclude that, in general, both thermodynamic as well 

as kinetic factors result in the existence of hysteresis. Here one needs to differentiate two cases: i) 

case of slow rates υ and ii) case of big rates υ. It is clearly indicated by the results obtained in the 

present work (Fig. 4 - Fig. 6). 
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Fig. 5. The influence of the kinetic constraint 

(activation energy Q) on hysteresis loop at low 

rate υ=5·10
-13

 K, fixed N0=1000, B=3·10
-20

 J 

and the same set of other parameters. 

Fig. 6. Freezing effect - the demonstration of the 

dominating influence of kinetic constraints on 

hysteresis at low temperatures. The result is 

presented for different rates υ at B=0 (σ=0), 

N0=1000 and the same other parameters.  

 

In order to find out the influence of thermodynamic constraints we should establish the different 

thermodynamic parameters, say, different values of parent phase-nucleus interface tension σ at fixed 

other ones (Fig. 4). We see that as the value of interphase tension decreases the hysteresis loop 

narrows. In limit case σ=0 (and nonzero Q, fixed circling conditions, fixed N0=1000, and fixed other 

parameters) the hysteresis disappears (Fig. 4) but only for slow rates υ (Fig. 6). 

To see the influence of kinetic constraints we should establish the different values of energy 

barrier Q. Fig. 5 shows the influence of Q on hysteresis loop. Hereby fixed υ=5·10
-13

 K, N0=1000, 

B=3·10
-20

 J and the same other parameters was used for two different activation energies Q1=18 kTm 

and Q2=17 kTm. We see that, the smaller is the Q (the bigger is the D), the less is the width of 

hysteresis. 

If one distinguishes the influence of ‘pure’ kinetic constraints then one should discuss the case 

σ=0. In limit case σ=0 the nucleation barrier becomes zero (for B=0, σ=0 in Eq. 3). So in the case of 

slow rate (say, previously chosen υ=5·10
-13

 K), when the evolution of ( )τ,Nf  function almost 

coincides with the evolution of equilibrium function ( )τ,Nf eq , the influence of diffusion hop delay 

is negligible small. As a consequence of this, the hysteresis in evolution of ρ disappears (Fig. 4). 

Note that the results in Fig. 4 are presented for the nonzero finite rate (υ=5·10
-13

 K) of change of T; 

and in the case σ=0, the evolution path of ρ coincides with the ρeq. So, for slow rates υ the decrease 

of Q (leading to increase of D and ( )Nv+ ) yields the independence of hysteresis loop on kinetic 

constraints. 

At the same time at big rates υ of cycling the existence of hysteresis may take place mainly due 

to kinetic factor Q. The comparison of situations with big different rates υ and σ=0 is shown in 
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Fig. 6. At first, for high T, the diffusion coefficient D=D0⋅exp(-Q/kT) is big. As the temperature 

decreases the value of D decreases too. That is, at low T the hysteresis curve becomes essentially 

different from the equilibrium one (‘snake’ or ‘cobra’ shape of hysteresis loop in Fig. 6 for big rates, 

σ=0, N0=1000 and the same other parameters) – freezing effect. One can see that the width of 

hysteresis is different for high T, low T and intermediate ones. In intermediate intervals of T the 

width (length between the braches) of the hysteresis is thinner. It means that at high temperatures 

the hysteresis may be related mainly to thermodynamic controlled process but at low temperatures 

the hysteresis may be related mainly to kinetic controlled process. As one can see from Fig. 6, in the 

case of slow rate υ=5·10
-13

 K the hysteresis ‘loop’ for ρ coincides with the equilibrium curve ρeq 

and shown also in Fig. 4. 

4. Summary and Concluding Remarks 

The separation kinetics in nanopowder under the temperature cycling is presented. For finite rate of 

temperature changes one should observe hysteresis behaviour. Such hysteresis is related to the 

interconnected size and depletion effects and presented in the frame of the kinetic equation 

approach. 

Model shows that the width of hysteresis loop depends on the: i) thermodynamic constraints (like 

size of a system, number of atoms in the particles, interphase tension) at fixed rate of temperature 

changes and other parameters; ii) kinetic constraints (energy barrier for diffusion across the parent 

phase-nucleus interface). In particular, the greater are: i) the size of a system, ii) the interphase 

tension, iii) the energy barrier for diffusion, iv) the rate of temperature changes, the greater is the 

width of the hysteresis loop and vice versa. As the mentioned i)-iv) values decrease, the hysteresis 

loop narrows showing the tendency to disappearing. 

The model shows that at high temperatures the hysteresis is related mainly to thermodynamic 

controlled process and at low temperatures the hysteresis is related mainly to kinetic controlled 

process. 
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