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Abstract. Interest in micro- and nanomaterials comes from the fact that matter at the micro-
and nanoscale behaves differently from our common macroscopic world. Effects negligible at
the macroscopic level become important at the micrometer and nanometer scales, and vice
versa. In this communication, the variations of some physical effects with dimensions are
discussed, in order to understand the origin of the apparent different properties of materials
and their processing. The limits of validity of well known physical laws are also discussed.
Particular emphasis is given to nanomaterials, in order to determine when and how size and
quantum effects play major roles.

1, Introduction

There is currently a growing interest in the field of nanotechnologies, both from the
fundamental and applied points of view. Nearly 40 countries throughout the World have
decided that nanosciences and nanotechnologies are among their scientific and technological
priorities. Simultaneously, the interest in micrometer sized components continue to grow and
lead to various applications, although some fundamental questions remain.

Interest in micro- and nanomaterials comes from the fact that matter at the micro- and
nanoscales behaves differently from our common macroscopic world. Effects negligible at the
macroscopic level become important at the micrometer and nanometer scales, and vice versa.

When going from the macro- to the nanoworld, one passes through two boundaries. When
the characteristic dimensions of the elements decrease from the macroscopic to the
micrometer size, the effects of gravity become negligible as compared with adhesive and
friction effects. For instance, surface tension dominates gravity. This implies that our
reasoning, based on our experience at the macroscopic level, is no more valid. We have to
modify our rules of thinking. The boundary between the macroscopic and microscopic levels
is not sharp. It depends on the effect to be considered.

When the characteristic size decreases further to attain the nanometer range, another limit
is encountered. While the macroscopic properties of matter remain generally valid at the
micrometer size, surface effects become dominant at the nanometer scale. Moreover, when
one reaches the interatomic distance range, quantum effects appear.

The problem is further complicated by the fact that:

1) these two boundaries are not sharp ;

2) they depend on the effect being studied;
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3) they depend on the nature of the material(s) involved.

Another aspect makes the reasoning disturbing: some effects are quantitatively well
described by theoretical models which are not valid (from the fundamental scientific point of
view) at the involved size ranges. The Occam’razor principle, or law of parsimony, often
applies in nanosystems. One example (among others) is the well known classical nucleation
theory. This theory assumes that the concept of surface tension remains valid, while the nuclei
are so small (they contain a few hundreds of atoms) that the concept is no more valid. But it
works well, and the nucleation theory is used by scientists and engineers.

In order to understand the transition from macroscopic to nanoscopic dimensions, one
obviously needs to consider pluridisciplinary effects. In order to go progressively, the starting
point would be to deal with scaling laws. In this communication, it is not possible to be
exhaustive. So, we choose to treat a few particular cases and restrict our analysis to the
“usual” physics at small velocities, where the relativistic effects do not come into play. The
limits of validity of some well known physical laws are discussed.

2. From macro- to micromaterials

When going from the macroworld to micron sized materials, the intrinsic properties of the
material itself remain generally valid. However, when dealing with materials processing, care
has to be taken, due to the facts that :

a) surface tension effects are much larger than gravity below, say the mm range;

b) the dimensions of the particles compare with critical transport characteristic lengths,

like mean free paths.

Let us consider elements with a typical linear dimension, L. In the following, except when
explicitly stated, it is assumed that all the linear dimensions vary proportionally to L. This
implies that areas, S, vary like L?; volumes, V, vary like L*. Some scaling laws are given in
Table 1. As seen from the table, among all the physical parameters, some behave differently
with L. For instance, this is the case of Fg and Fyw. Their relative values also vary with L.
The adhesion force dominates the gravitational force at low L. The critical value at which
both forces are equal depend on the nature of the medium between the two solids. However,
below L 1 mm [1], Fy is much less than Fygy, Gravitation may then be neglected at such
small dimensions, both in the micro- and the nano-worlds.

Let us now consider a few particular examples.
2.1. Flow in micropipes

Fluids are obviously important, since, except in vacuum, all bodies move in a fluid (air,
water,...). Materials processing also often involve fluids. It is then interesting to look at the
variation with L of various fluid parameters.

When a body falls « vertically » in a fluid, viscous friction is such that, after some time, it
falls with constant velocity, viim. The transient time, 1, is proportional to wim. If the body is
spherical, with radius r, the limiting velocity is given by : Vim = 4pgr’/18nr, where 1 is the
dynamic viscosity of the fluid and p is the density. Viscous forces then drastically and rapidly
damp any motion at small dimension. A very small body remains immobile in air (when there
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is no air movement). When air moves, the small body follows the air movement, as
experienced by us by looking at dust in sunrays.

At high velocities, the hydrodynamics is unstable, and turbulent flow arises. The transition
from laminar to turbulent flow is given by the Reynolds number, Re. Re = pvi/m. If v ~ L,
then Re ~ L?.  For flow in pipes, the transition from laminar to turbulent flow occurs when
Re =10’ Moreover, it seems that the value of Re at the laminar-turbulent transition
diminishes when L is less than about 100 pum [2]. In this case, turbulence disappears in
microsystems in which liquids flow. For instance, let us take a capillary tube with diameter :
L =50 pum. The velocity of the fluid is v = 0.5x10-3 m-s-1 (or v = 10.L. s-1). It yields that in
air, Re =0.0016. In water, Re = 0.025. The flows are then laminar and viscous forces are
dominant.

The fact that viscous forces are dominant implies that motion is more difficult at small
size than could be expected from our (macro)experience. For instance, although the kinetic
rotation energy is very low at high angular rotation speed, it is difficult to attain very high
rates, due to viscosity effects. Water acts more like a syrup at these small scales.

2.2. Gas flow

When dealing with gas flow in micropipes, one attains regimes where the mean free
path of the particles or heat diffusion lengths are of the order of the dimensions of the pipes.
The gas flow is described by the kinetic theory of gases. The mean free path of molecules, A,
is given by 1 = kT/(4nR’p), where R is the radius of the molecule, p is the pressure... For air, at
T=288K,A=6,2x 10 /p m (p in hPa). '

The flow characteristics may be described by means of the so-called Knudsen number,
Kn:

Kn=2MA/L,

where L is a characteristic dimension of the pipe (in a cylindrical pipe, L is its diameter).

When a gas flows in a cylindrical pipe, one distinguishes three flow regimes [3] :

1) viscous when p-L > 0,7 x 102 hPa-m, i.e. L > 100-A or Kn<107?;

2) Knudsen when 2:10™* < p-L <0,7-102 hPa.m, or 10> <Kn<0.3;

3) molecular when p-L <2 x 10 hPa-m, i.e. L< 3.\, orKn>0.3.

In the viscous flow regime, the conductance of the pipe (the ratio between the gas flux
and the variation of pressure between the two borders) is proportional to p, while, in the
molecular flow regime, it does not depend on p. When L decreases, one goes rapidly from the
viscous to the molecular regime. For air, at room temperature and atmospheric pressure, the

molecular regime is attained at L < 186 nm. When L =1 um, p=0,2 atm; when L=1cm, p =
0,2~10“4 atm.

These few examples show that the materials behave differently at the micron than at
the macrosizes. Other examples are given elsewhere [4, 5].
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Table 1 : Scaling laws [4,5]

Physical quantity Definition Scaling laws  Remarks
Mass m L
Gravitation force Foge =mg i
Pressure on the ground P =FglS L
Adhesive force Fodw i Van der Waals, Casimir
Macroscopic friction force  Fy = pFy = umg £
Microscopic striction force  Fi, W
Kinetic energy E,=m*2 r? v constant
L’(v~1L) v~L
Gravitic potential energy Eyot=mgh i h constant
£ h~L
Moment of inertia I=cstml? bid
Kinetic energy of rotation K = (1/2)Iw* 7. ® constant
Maximal deflection of a ¢ i Under own weight
bent beam
Fundamental oscillation v ik Tubes, beams, cables,....
frequency
Maximum velocity of a wy,=4pgr’/18nr 2o
spherical mass in a fluid
Reynolds number Re = pvl/m L v constant, p constant
i v~ L, p constant
Diffusion time taige = LHaD ¥, D constant
Electrical resistance Rey=pe L/A &
Electric current Ia=Va/Rq 7 voltage Ve constant
Electric Power PeFRelIe]z: ViR L Ve constant
Joule effect W= R Ielzz ik Ve constant
Per unit area Win e Ve constant
Electric field Ea g Ve constant
Capacity of a condensator  C =¢gpd/d L Parallel plates
Charge of a condensator 0=CVy L Ve constant
Electric energy We=e-e0E*V/2 T V4 constant
Stocked energy Eeap = Q2/2C I, Ve constant
2 Constant charge density
Force between plates Feap iz
Magnetic field in a solenoid B = ulyn/L L n constant ; constant current
density : I ~ Vi
Magnetic ~ energy in @ Epgg =B>V/2p Ll
solenoid
Magnetic force P raen e
Thermal energy Ew
Thermal dissipation : Plgiss e conduction, radiation
dissipated power
Times for temperature 1y I
homogeneization
Melting temperature /3 1-fIL f 1 nm for 3d and 5d

elements
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3. From micro- to nanomaterials

When one goes below the micron size, one attains the nanotechnology domain. In this
range, fundamental questions appear, like : do nanomaterials behave like macromaterials ?
The question is not yet fully understood. This is due to the fact that

a) one may question the validity of thermodynamics :

b) the number of atoms at the surface of the particles cannot be neglected as compared
with the total number of atoms of the particle;

¢) quantum effects appear.

Let us address these three points.

3.1. Thermodynamics

One generally considers that thermodynamics is valid when the number of atoms is
«large ». What is “large” ? Let us look at the heat flow equation. It gives a macroscopic
description of a material, in a volume where thermal fluctuations are « small ». But: What is
“small” ? Let us consider a cube (of volume equal L*), with N atoms per unit volume. The
relative temperature fluctuation within the cube is 67/ (VL)' orL  (sT/T)*® N'>. Let
us assume that the temperature is uniform when it fluctuates by less than 10™. In solids and
liquids, N 10”m” sothatZ 0,01 ym.Ingases, N 10*m> andZ 1 um. Therefore, the
use of the heat flow equation is not valid when the size of condensed systems is less than 0.01
pm. For gases at atmospheric pressure, the critical dimension is L < 1 um, 1.e. it compares
with the molecular flow transition, as seen before,

However, it is worth noting that there exist cases where temperature gradients are very
high but the heat flow equation works. For instance, under high power laser irradiation, one
calculates grad 7> >107 K-cm-1 , or 87 = 1K over L << 1 nm, where the heat flow equation
appears to give correct results [6,7]. It seems that the Occam’razor principle applies here.

3.1.1. The definitions of temperature

In the previous discussion, we have swept an important concept “under the rug”. What is
the temperature ? and: Can the temperature (an equilibrium concept) be invoked in a non
equilibrium process, like heat flow ? The reader interested by this question may look to the
careful analysis of the problem by Cahill et. al. [8].

The usual definition of temperature is related to the average energy of a system of
particles. This definition is for a system in equilibrium and works even for nanoscale systems.
It is then valid for the study of nanoparticles in thermal equilibrium.

In non equilibrium processes (like heat conduction), the problem is to define temperature
in the presence of a temperature gradient. This is not difficult in macroscopic systems, where
it is possible to define a local temperature in each space domain. The temperature might vary
from one domain to the next. When small systems are considered, the main problem is to
define a local temperature. There are three ways to define a local temperature.

The first definition is used, for instance, in molecular dynamics. In this method, one
calculates the position and the velocity of each atom in each time period. One then calculates
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the mean kinetic energy, E., over N time steps. N must be high enough, so that the result is
statistically valid. The calculations are classical. The temperature is classically given by :

(Ec)=—12—<mvi2>=%kT

The temperature is defined locally, over one atom. This approach neglects quantum effects.
The second approach takes quantum effects into account. The collective motion of

atoms is described by the phonon model. They are characterised by their pulsation, o(pol,q),

depending on the wavevector, q and polarisation, pol. The mean kinetic energy is given by :

Lim?)= 3 rola)/[ewp(o(a) 71

At high T (well above the Debye temperature), the classical and quantum equations give
similar results. However, at low temperature (and near room temperature), both definitions
give different values of 7. A third definition is to substract the zero temperature motion from
the quantum definition.

Among the three definitions, which one is the correct one? It depends on the size of
the domain where T is defined. The classical definition is purely local. T may be defined for
each atom or row of atoms.

With quantum definitions, the length scale is defined by the phonon mean free path. If
two space domains are characterized by different temperatures, the phonon distributions are
different. One domain is defined by one phonon distribution. Hence the characteristic length
of a local domain at a given fixed 7 must be larger than the phonon diffusion length. But this
length is a function of the phonon frequency. Low frequency phonons have large mean free
path, while high frequency ones have shorter mean free paths. From this point of view, T may
not be defined on one atom or row of atoms. In particular, one may not have abrupt variations
of T between two successive rows of atoms.

However, molecular dynamics calculations of heat flux through grain boundaries show
that one might observe sharp temperature variations through grain boundaries. As discussed
by Cahill et. al. [8], this might mean that grain boundaries are a natural border between
domains where T are different.

3.1.2. Heat transfer

In ordinary matter, conduction heat transfer is described by the Fourier’s law, stating that heat
flux is proportional to the temperature gradient between the extremities of the material and to
the thermal conductance. This is not valid for nano-objects. Indeed, the mean free path of
phonons is generally much larger than the size of nano-objects. Then, phonons behave in a
ballistic way, without collisions within the nano-object. So the heat transfer is more rapid than
under usual conditions. A consequence is that the time of heating of nanosystems is shorter
than predicted by classical heat transport equations. For instance, a cube of dimension 10 nm
attains equilibrium in about 10'%s.
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3.2. Size effects

Particles with a diameter in the range of 1 - 100 nm are in an intermediate state between
the solid and the molecular ones. Such particles are characterised by the fact that the ratio of
the number of surface to volume atoms, A, is not small. For instance, for a particle containing
about 4000 atoms, of radius, R ~ 2 nm, one calculates that A ~ 0.3. It is then obvious that the
effects of the surface on the cohesive properties of the particle cannot be neglected. This is
seen in various situations, like the size-dependent melting point depression [9,10] and other
phase transitions [11,12] of nanoparticles. Since the surface tension depends on the chemical
environment, it is obvious that the melting point and phase diagrams variations depend on it,
as observed experimentally for various cases [13, 14, 15].

In inorganic materials, the melting temperature, 7, varies with the radius of the particle, R,
like (7o » is the bulk melting point) :

Tn=Tn o [1-/(2R)].

o depends on the material. It is between 0.4 and 3.3 nm [10]. A few examples are given in
Table 2.

Table 2. Coefficient of variation of 7}, for a few elements

Element 7, . (K) o (nm)[10, 16] Olexp (M)
Ag 1234 1.27, 0.96
Al 933 1.14, 1.487 0.6
Au 1336 0.92,1.1281 0.96
Co 1768 1.00, 0.9
Ge 1210.6 2.30,
3.33,1.06
In 429.4 1.95]2.65 0.974
Pb 600.6 0.98, 1.048
1.40, 1.79
Si 1683 1.88,0.84
Sn S505:1 1.57,2.278 1.476

There is also an effect of size on the phase diagrams of nanoparticles. Again, this is due to the
effect of the surface on the cohesion of the particle [13].

Since the number of surface atoms play a role, it is obvious that the phase diagram also
depends on the shape of the particle. It is demonstrated [17] that the phase diagram of non
spherical particles may be calculated from the spherical case, at the corresponding value of
the ratio surface area vs. volume, both without and with surface segregation, provided the
surface tension is isotropic. This is important when evaluating the effect of the shape on the
materials properties.

When looking at the phase diagram of nanoparticles, one has also to take into account the fact
that the total number of atoms within one particle is limited. This is demonstrated to lead to
various particular effects. In particular, when one looks at the nucleation of one new “crystal”
phase of the nano-particle, it turns out that there exist three possibilities: phase separation,
prohibition of decomposition and formation of metastable state of nanoalloy [18].
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This reasoning is valid in the thermodynamical limit, i.e. when the radius is of the order of 3
nm or above. When the number of atoms, A, in the nanoparticle decreases down to 100 or
below, the stability is calculated by molecular dynamics methods [19]. It turns out that the
melting and solidification temperatures are different. At low temperature, the particle is
“solid”: the positions of the atoms don’t vibrate much. At high temperature, the particle is
“liquid”: the mean values of the interatomic distances fluctuate much around the equilibrium
positions. At intermediate temperature, things depend on the directions of the temperature
change. When one starts from low temperature and the system is heated, melting takes place
at a given temperature. When one cools down the particle from the liquid state, the
solidification occurs at a solidification temperature, different from the melting one. It is worth
noting that this also means that it is possible to define the “solid” and “liquid “states for very
small nanoparticles.

3.2.1. Matter in nanotubes

The flow of liquids in nanotubes is now an interesting field of research. In particular, so-
called carbon nanotubes are seen as potential submicroscopic test tubes or pipes. Their
interest is tremendous to obtain nanothermometers (by using the dilatation of bubbles in
nanotubes), or hydrogen containers in future hydrogen reservoirs in cars equipped with fuel
cells. For such goals, it is necessary to understand how nanotubes and liquids interact, in
particular the wetting properties. In classical models, this is described by the Young-Laplace
equation:

Ap = (2y/¥) cos8,

where Ap is the pressure difference across the liquid-vapor interface in a capillary, 7 is the
radius of curvature of the meniscus, 6 is the contact angle between the meniscus and the
surface. The liquid is drawn spontaneously into the capillary, when Ap is positive. This
implies that < m/2. It is hard to predict the value of 6. Experimental results indicate that
carbon nanotubes are wet only by low-surface-tension liquids [19]. This is in qualitative
agreement with the macroscopic behaviour. When the liquid does not wet the nanotube, other
methods have to be applied, like their opening by wetting first by acids.

Table 3. Wetting properties of carbon nanotubes [20]

Substance Surface tension Wetting
(mN/m)

HNO; 43 Yes
3 61 Yes
Cs 67 Yes
Rb 1 Yees
V205 80 Yes
Se 97 Yes
Te 190 No
Pb 470 No
Hg 490 No
Ga 710 No
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It seems intuitively obvious that only liquids might wet carbon nanotubes. However, it has
been noted above that the melting temperature, 7}, , is both a function of size and shape. It
may be expressed following [17] :

Tn=Tn o [1 - (cl/6)(4/P)].

(4/7) is the ratio between the number of surface and volume atoms. It is calculated by purely
geometrical arguments. It is worth noting that, since the sphere is the geometrical figure with
the lowest (A/V) at constant ¥, the size variation of all other 3-dimensional shapes is larger
than for the sphere. One may express :

A/V = B(shape) /7?3

Table 4. Parameter B for various geometrical shapes

Shape B(shape) *’
Sphere 4.836
Cube 6

Octahedron 5.719

Icosahedron 5.149

In nanotubes, the inner matter is cylindrical. In this case, it is easy to demonstrate [21] that the
ratio a(sphere) : ocylinder) is equal to 3 : 2.

Whatever this, it turns out that material within the nanotube might melt at lower (or
higher) temperature than the bulk melting point. For instance, it has been shown
experimentally that the crystallinity of a Pb wire of diameter 3 nm in a carbon nanotube
disappears at room temperature [22]. This is in semi-quantitative agreement with the
theoretical models, They predict that, under these conditions, 7}, is in the 360-450 K range.

3.3. Quantum effects

Quantum effects manifest themselves mainly when one studies the electronic and optical
properties of nanosystems. The size of the systems where quantum effects are important
depends on two parameters [23,24] :

- the de Broglie wavelength of electrons : A 3

- the Bohr radius of the exciton (electron-hole pair), ag, in semiconductors:

ap =gh?/ue?

€ is the dielectric constant, u is the reduced mass and e is the charge of the electron.

These dimensions are of the order of a few nm. At such small dimensions, the optical and
transport properties of nanoparticles are different from the ones of the bulk materials, For
instance, the optical absorption edge of semiconductors is shifted “to the blue” when L
decreases.

One also may design “mesoscopic” structures, for which one, two or three dimensions
compares or are smaller than Ay and ag. In these structures, the elementary excitations are
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subject to a quantum confinment. When the confinment involves one direction, while the two
others are infinite, the structure is said to be 2-dimensional. It gives rise to a so-called
quantum well. When confinment is in two directions, one obtains a quantum wire. When there
is a quantum confinement in three directions, one has a quantum dot. The electrical and
transport properties of these systems differ from the ones of the bulk material.

As said previously, when one considers transport in nanoscale systems, the question of
the nature of transport at the atom size has to be carefully addressed. At the boundary between
two “grains”, the temperature is not defined. So, how do electrons or heat jump from one side
to the other ? In these cases, one often adopt the so-called Landauer formalism. Within this
formalism, one assumes that there are two reservoirs (of electrons or heat) at known
temperatures. The flows are considered to be ballistic. One then computes the energy flows
through the possible channels between the two reservoirs. It turns out that the electron and
heat flows are quantized. ;

The electron flow is described by the electron conductance, G, given by the so-called
Landauer formula :

G=(n YTI(1-T).

T is the transmission by channel [25]. Experimentally, one observes that the conductance

increases by integer values of the quantum of conductance (¢*/m ). Using similar theoretical

arguments with phonons, at low temperature, it has been shown that in a ballistic, one-

dimensional channel, there exists a quantum of thermal conductance (7'= temperature) [26]:
Gy =k; T/(3h)

4. Conclusions

Altogether, it turns out that our intuition and knowledge of the behaviour of materials at
the macroscopic scale is not well adapted to the understanding of nanomaterials. The use of
scaling laws is useful, but not sufficient. When going to the nanoscales, questions relevant to
the validity of thermodynamics, size effects on the cohesion of particles, quantum effects
have to be carefully addressed. It turns out that these three questions begin to manifest
themselves when the characteristic dimensions of the particles decreases down to the 5-10 nm
range. The combined effects of cohesion and quantum effects has not yet been addressed to
our knowledge.
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