
INSTITUTE OF PHYSICS PUBLISHING NANOTECHNOLOGY

Nanotechnology 16 (2005) 1724–1733 doi:10.1088/0957-4484/16/9/053

Size-induced hysteresis in the process of
nucleation and phase separation in a
nanopowder
A S Shirinyan and M O Pasichnyy

Department of Physics, B. Khmelnytsky National University at Cherkasy, 81, Shevchenko
Street, Cherkasy, 18031, Ukraine

E-mail: shirinyan@phys.cdu.edu.ua

Received 6 April 2005, in final form 14 June 2005
Published 6 July 2005
Online at stacks.iop.org/Nano/16/1724

Abstract
Peculiarities of kinetics of the solid–solid phase transition between
single-phase and two-phase states in a nanopowder are considered here.
We present a numerical assessment of the time-dependent behaviour of a
supersaturated nanosystem undergoing temperature cycling. We
demonstrate a distinct size-induced hysteresis and its peculiarities. The
analysis indicates that as the system size decreases the hysteresis loop
narrows, showing a tendency to disappearance. The model predictions are
demonstrated for a sample system with general hypothetical properties. The
results are found to depend on such thermodynamic and kinetic constraints
as the size, the rate of temperature cycling, energy barriers for nucleation
and diffusion, mechanisms of nucleation, and scatter in particle sizes of a
nanopowder. The newly obtained results may be used for the achievement of
an alternative method of information recording in present-day and future
technologies.

1. Introduction

Due to their unique properties, first order phase transitions
in nano-size systems play an important role in both scientific
and technological fields [1, 2]. Despite their importance,
understanding of these transitions is far from complete. So far
there is no kinetic theory of separation, nor are there methods
for controlling the formation of the bulk nanocrystalline
materials, or forecasting of metastable phases in nanostates.
In order to predict the properties of nanomaterials before
their manufacturing, one must theoretically investigate these
nanomaterials and the peculiarities of their behaviour in
different situations, states and transformations.

It is known that a system which is quenched into the two-
phase region separates via nucleation and growth of the new
phase nuclei. Also, it is found that the boundaries of the first
order phase transitions in nano-size systems deviate from the
macroscopic ones due to the size effect [1, 3–5]. The structure
of nanoparticles may change with the size, and also with the
composition at constant size [6]. The explanation of size
effects is generally related to additional energy of the external

surface. Sometimes this property is interpreted in terms of
additional energy under the curved surface due to Laplace
tension [2, 7, 8]. Another effect arises for phase transitions
in the multicomponent nanosize systems with change of
composition, which was investigated by Rusanov in the 1960s.
This is related to the limited number of atoms in a nanovolume,
also known as the finite depletion effect [9–11]. So, when
one extrapolates this argument to nanomaterials under various
external conditions, one concludes that their kinetic behaviour
should differ from that of the bulk material. There have been
very few reports on the key role that size and finite depletion
play in determining the properties and kinetic behaviour of the
transforming nanosystem [12, 13].

Here we aim to elucidate the qualities of possible effects
on the kinetics and the mechanism of phase transition in
a nanopowder, rather than to obtain a realistic description
of a specific binary system occurring in nature. While the
theory presented here has a rather general character, one
can report some specific applications of experimental interest
for the theoretical approach developed in this paper. The
origin of the presented results derives from the variation
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in energy with size and composition. So, one might
expect the qualitative (and quantitative) conformance of the
calculated with the experimental results in the case of the
composition- and size-dependent material properties. In
this respect, nanoparticles of Pb–Bi alloys have size-induced
melting behaviour, observed by hot stage transmission electron
microscopy [14]. The controllable, continuous and reversible
phase coexistence of different crystalline and disordered
phases in gallium nanoparticles under electron beam excitation
has also been demonstrated [15]. It has been shown
experimentally that the size dependence of structural solid–
solid transition in CdSe semiconductor nanocrystals may
indicate hysteresis behaviour [16, 17]. Moreover, recent
theoretical, experimental and numerical Monte Carlo results
on the first order phase transitions in nanovolumes demonstrate
hysteresis phenomena [18–22].

We deal with a powder of nanosize particles subjected to
temperature cycling, and present a numeric analysis within the
framework of the standard kinetic equation approach. The
present work is aimed at the study of the ‘back-and-forth’
transition during the temperature cycling and the evolution of
such quantities as the mean composition in the parent phase
and the volume fraction of the new phase. In other words, the
objective of this paper is to describe the kinetics (unsteady-
state kinetics of nucleation, new phase growth and separation)
in the nanopowder related to

(i) the finite (non-negligible) depletion of the parent phase in
nanoparticles of the powder;

(ii) finite rates of change of the external parameters
(temperature changes during the annealing and heating);

(iii) the finite size of the system;

(iv) finite rates of the transfer of atoms across the parent phase–
nucleus interface and bulk diffusion (existence of free
energy barrier for diffusion);

(v) the effect of scatter in particle sizes (distribution of the
nanoparticles);

(vi) mechanisms of nucleation (homogeneous or/and hetero-
geneous).

The structure of the paper is as follows.
In the next section we describe the thermodynamic

model of phase transition. Here we present the analysis
of the influence of size on thermodynamics when the final
nucleation number, equilibrium size distribution, equilibrium
mean composition in the parent phase and volume fraction of
the new phase are obtained as functions of such thermodynamic
parameters as the temperature and system size.

In section 3 we introduce the kinetic model of transition
in the monodisperse nanopowder on the basis of a kinetic
equation.

In section 4 we discuss and illustrate the unique features of
the first order phase transitions—the hysteresis phenomenon
based on the depletion and size effects. The corresponding
modification for the case of scatter in particle sizes is presented
in the appendix.

The concluding remarks are presented in section 5.

(a)

(b)

(c)

C0 C0
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Figure 1. Nanopowder under the temperature cycling, i.e. particles
of initial composition C0 at high temperature and the same particles
after the phase transition at low temperature: (a) case of equal size
particles; (b), (c) case of scatter in particle sizes; (c) illustration of
different mechanisms of nucleation. Each nanosized particle is
described as isolated, each nucleus as a new phase inside the particle.
Cp—concentration of the ambient parent phase after the nucleation.

2. Basic thermodynamic model

When dealing with nanoparticles, it is necessary to specify the
size range under discussion and discuss the approximations,
limits of applicability and specificities of nanosized particles.
Indeed, in the literature, the term ‘nanoparticle’ is used for
particles having sizes between a few atoms and clusters up to
the 500 nm range. The behaviours of these nanoparticles are
different. When the particles contain a few hundred atoms,
the use of bulk parameters for describing nanosized binary
particles may be not correct [22, and references therein]. Here,
we treat cases where the thermodynamical description remains
valid. This implies that the overall number of atoms in the
particle is relatively large (N0 � 103), where the classical
nucleation theory is applicable.

2.1. Transition modes

Let us look at a binary system consisting of A and B
components. Let us assume that small isolated initially
supersaturated particles of a binary alloy are quenched into
the two-phase region. Then a phase transition from the single-
phase state to the two-phase one may occur in each particle
(figure 1). As a first approximation, we arbitrarily assume that
the new thermodynamically advantageous phase has strong
stoichiometry C1 = 0.5 (i.e. the atomic concentration). The
composition in each initially supersaturated solid particle is
equal to C0 (so that the new phase nucleus has a composition
different from the parent phase one, C1 �= C0). Hereinafter,
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the starting phase is also called the ‘parent’ or ‘old’ phase and
the newborn phase is called phase 1 and will have subindex 1.

At first we restrict the discussion to the thermodynamics
of a single particle.

2.2. Driving force

Now let us consider the driving force of the phase transition.
It is necessary to consider the free energy of the new phase,
relative to that of the parent phase. Since the considered
temperatures are well above the Debye temperature, the
specific heat is approximately constant. Hence, for the
formation of a two-phase system, where the new phase has
a non-zero driving force of transformation, one can write

�g0(T , C) = kT (C ln(C) + (1 − C) ln(1 − C)). (1)

�g1(T ) = �g1 + αkT , (C = C1). (2)

Here α, �g1 are parameters of the system, k is the Boltzmann
constant, T the absolute temperature, �g0(T , C) is the Gibbs
free energy (per atom) of the parent supersaturated phase and
�g1(T ) is the Gibbs free energy of formation of the new
phase 1.

2.3. Depletion

Usually, when nucleation is considered, it is assumed that the
reservoir of matter is very large. In nanosystems, it is quite
the opposite. If a nanosystem is quenched into the two-phase
region, then, in addition to the size effect, the depletion of the
surrounding parent phase may occur because of the difference
in C0 and C1 compositions. Hence one must also take into
account the fact that not all stoichiometries are available, due
to the above-mentioned finite quantity of matter [21]. The
mole fractions C1 and Cp of species B in the new and parent
phases, respectively, are interrelated by the conservation law:

C0 N0 = C1 N1 + Cp Np, (3)

where N1 is the number of atoms in the newly formed cluster
of the new phase (2) and N0 and Np (Np = N0 − N1) are
the numbers of atoms in the parent phase before transition and
after nucleation, respectively.

2.4. Energy of transition

The change in Gibbs free energy (per particle) in the case of
nucleation may be expressed as

�G (N, T ) = �g1(T )
N

C1
+ �g0(T , Cp(N))

×
(

N0 − N

C1

)
− �g0(T , C0)N0 + K

(
N

C1

)2/3

, (4)

where N is the number of structural units AB in the new
stoichiometric phase (interrelated with the number of atoms
N1 in the same phase: N = C1 N1), K = 3(4π/3)1/3σn−2/3

is the coefficient of the surface energy contribution and σ is
the specific interphase energy on the parent phase–nucleus
interface. Hereinafter the number of atoms per unit volume n is
presumed to be the same for the old and new phases (n1 = n).

2.5. Equilibrium distribution

The previous discussion deals with values of the thermody-
namic parameters, as applied to a single nanoparticle. Under
experimental conditions, one generally deals with a large num-
ber of particles. It is therefore mandatory to study the phase
transition of nanoparticles using a statistical approach by con-
sidering the size distribution function.

Under equilibrium, the probability of the first order phase
transition is given by the theory of thermodynamic fluctuations.
The equilibrium in a nanopowder will correspond to the
statistic distribution, in which, at any moment of time, at
the given T , some of the particles will be in single-phase
states and the rest in two-phase states (figure 1(a)). The
corresponding number of particles, feq(N, T ), in which the
new phase nucleus consists of N structural units AB, may be
found by the Boltzmann formalism:

feq(N, T ) = W∑Nmax
N=Nmin

exp{−�G(N,T )

kT } exp

{
−�G (N, T )

kT

}
.

(5)
Here W is the total number of nanoparticles in the powder.

Nmin is the minimum number of structural units in the new
phase nuclei. According to the conservation of matter (3),
at every fixed T , there exists the constraint on the maximum
number of atoms in the nucleus of the new phase 1. This
number cannot be bigger than N0 C0/C1 (when the parent phase
is fully depleted by B-species, Cp = 0). So the maximum
number of structural units in each nucleus should not be
bigger than Nmax = N0C0. Hereby the change of Gibbs free
energy (4) at this limit point Nmax has the tendency to increase
rapidly [9–11].

2.6. Varying T and N0

Let us first examine the consequences of the temperature
changes on the variation of thermodynamic quantities
�G(N, T ) and feq(N, T ) with other parameters fixed [22].

At a high T , the �G(N, T ) dependence on N is increasing
(and the dependence of feq(N, T ) on N is decreasing). This
is the case of the prohibition of the phase transition. When
T decreases, the dependences of �G(N, T ) and feq(N, T )

on N change from monotonic curves to nonmonotonic ones
with one maximum and one minimum. A simple analysis of
equations (4) and (5) shows that the minimum of the feq(N, T )

curve corresponds to the maximum of the �G(N , T ) curve and
vice versa. Also, the nonzero maximum of feq(N, T ) (and
the nonzero minimum of �G(N, T )) corresponds to the two-
phase equilibrium state of the nanopowder (figure 1). Hereby,
the lower T , the bigger are the average sizes of the supercritical
nuclei of the new phase at equilibrium conditions.

Similar conclusions are true with respect to the varying
of N0 with other parameters fixed [13, 22, 23]. As is shown,
when N0 is rather small, the nucleation is impossible. Thus,
the limited volume of the nanopowder particles constrains the
composition fluctuations, as well as the fluctuations of the new
phase, and allows one to keep the alloy nanopowder in a state
which would have been unstable in the case of a bulk.
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2.7. Mean composition in depleted parent phase at
equilibrium

Let us recall here that the present work intends to investigate the
evolution of the mean composition in the depleted parent phase
and of the volume fraction of the new phase (shown below).
The corresponding equilibrium mean composition 〈Ceq

p 〉 in the
parent phase and the equilibrium volume fraction of the new
phase ρeq are found by ratios:

〈Ceq
p 〉 =

∑Nmax
N=Nmin

Cp(N) feq(N, T )(N0 − N
C1

)∑Nmax
N=Nmin

feq(N, T )(N0 − N
C1

)
,

ρeq =
∑Nmax

N=Nmin

N
C1

feq(N, T )

N0W
.

(6)

Found by such a procedure, the equilibrium mean
composition in the parent phase and the volume fraction of
the new phase are obtained as functions of T and N0.

3. Basic kinetic model

3.1. Temperature cycling

Let us now introduce the finite rates of temperature change
and consider the temperature cycling. First, we start from
the single-phase state at high T (figure 1) and let T decrease
(cooling). Then we stop the temperature at some point, when
the alloy is quenched into the two-phase region, and reverse
the direction, i.e. increase T (heating) at the same rate. One
cycle refers to the complete to-and-fro changes of T from some
initial point back to the same point, say from T = 1100 K
to T = 800 K back to T = 1100 K. The corresponding
‘decoding’ of ‘back-and-forth’ transformation is made within
the framework of the kinetic equation approach. In the case
considered here, the temperature T will change in time as
a linear function with constant rate |dT/dt | = constant for
cooling and heating. The Gibbs free energy (4) may be
expressed as the function of time (via the time-dependent
temperature): �G(N, T ) ≡ �G(N, t).

3.2. Evolution of distribution function

Let us consider the non-equilibrium size distribution function
f (N, t)—the number of new phase droplets consisting of N
structural units at the moment of time t . As mentioned above,
C0 < C1, C1 = 0.5, so the process is controlled by B
component mobility. The evolution of the ensemble of clusters
formed by nucleation and growth processes will be described
by the kinetic equation

∂ f (N, t)

∂t
= f (N − 1, t)v+(N − 1) + f (N + 1, t)

× v−(N + 1) − f (N, t)(v−(N) + v+(N)). (7)

The frequencies of attachment v+(N) ≡ v+(N, T ) and
detachment v−(N) ≡ v−(N, T ) of monomers AB to a cluster
of size N are interrelated as [24]

v−(N, T ) = v+(N, T ) exp
(

�G(N, T ) − �G(N − 1, T )

kT

)
.

(8)

One usually distinguishes two kinds of kinetic redistribu-
tion of components: for a so-called diffusion-control (bulk)
process and for a kinetic-control (surface) process.

For nanometric particles, interdiffusion of atoms can be
much faster than in bulk binary materials, by several orders of
magnitude [25]. This means that the diffusion barriers may be
significantly lower than in the bulk. Moreover, in the case of
nanosized particles the surface diffusion has to be the key role.
This is more and more likely as the size decreases. That is why,
in the following, the quantity v+(N, T ) will be taken as that
of the kinetic-control process [24]: ν+(N, T ) = M DCp N 2/3.
Hereby, M is the constant of the material, and the temperature-
dependent coefficient of diffusion D of ambient phase B-
species located in the vicinity of the nucleus of the new phase
will obey the Arrhenius law: D = D0 exp(−Q/kT ) with the
activation energy Q of diffusion. The quantitative expression
for the frequency v+(N, T ) is obtained by considering the
growth of the new phase clusters that have to result from a
series of monomolecular additions to the nucleus. In the case
of solid-to-solid phase transition, this process will require a
diffusional hop across the interface and activation energy Q for
the jump across the interface. The quantity Q may be presumed
to be similar to that required for diffusion in the solid parent
phase: Q ≈ 18kTm (Tm—the temperature of melting). So,
in our following consideration we use a new nondimensional
variable for the time τ = M D0t and the corresponding rate
υ = |dT/dτ |.

Let us first consider the case of equal size particles
(modification is presented in the next section). In this case
the cluster size distribution function f (N, τ) obeys boundary
conditions (which are reduced to the conservation of particles):

f (Nmin, τ) = W −
Nmax∑

NB=Nmin+1

f (N, τ),

f (Nmax, τ) = 0,

f (N, τ = 0) =
{

W, N = Nmin

0, N �= Nmin.

(9)

3.3. Evolution of average composition and volume fraction

Further, we want to show the evolution of the average
composition 〈Cp〉 of the depleted parent phase and the volume
fraction ρ of the new phase. The corresponding values are
determined by formulae:

〈Cp〉 =
∑Nmax

N=Nmin
Cp(N) f (N, τ)(N0 − N

C1
)∑Nmax

N=Nmin
f (N, τ)(N0 − N

C1
)

,

ρ =
∑Nmax

N=Nmin

N
C1

f (N, τ)

N0W
.

(10)

3.4. Algorithm of numeric calculations

We introduce the number of particles W and their sizes N0,
then trace the driving force of transformation �G(N, T ) for
every particle at each evolution stage, then count the number
of separated particles f (N, τ) in the nanopowder, 〈Cp〉 and ρ

during the temperature cycling.
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Figure 2. Representation of the hysteresis effect in the powder of
nanosize particles related to the finite size and depletion: mean
composition 〈Cp〉 in depleted parent phase versus temperature T (for
three different constant rates υ1 < υ2 < υ3, υ1 = 10−13 K;
υ2 = 5 × 10−13 K, υ3 = 10−12 K). Parameters are presented in the
main text. The solid line characterizes equilibrium values 〈Ceq

p 〉.

4. Hysteresis—results and discussion

When the rate of T change is finite, one can observe hysteresis
behaviour, as shown below. Let us choose as the numerical
values of parameters of the binary nanosystem the typical
values for intermetallic systems. Numeric calculations in
this paragraph have been realized for the following set of
parameters: C0 = 0.3, C1 = 0.5, Nmin = 2, W = 1010,
�g1 = −4.5 × 10−20 J, α = 2.3, υ = 5 × 10−13 K,
Q = 18 kTm , Tm = 1200 K, N0 = 1000, K = 3×10−20 J. The
temperature will change in time from 1100 to 800 K and back
to 1100 K with different constant rates υ = |dT/dτ |: υ1 =
10−13 K, υ2 = 5×10−13 K, υ3 = 10−12 K, υ4 = 5×10−12 K,
υ5 = 5 × 10−11 K and υ6 = 1 × 10−10 K. Values N0, T , υ, Q
and K will also be pointed out in each simulation experiment
separately, if they differ from the mentioned ones.

In this section we report the newly obtained result: size-
induced hysteresis. Our model shows that the width and shapes
of hysteresis loops depend on N0 , dT/dτ , σ or K , Q and scatter
in particle sizes. The separation kinetics related to the different
rates of temperature change is now investigated. Hereby we
shall alternately show 〈Cp〉 and ρ.

4.1. Varying dT/dτ

The process of temperature cycling from high T to low T
and back, with other parameters fixed, is shown in figure 2.
Please note that the evolution of f (N, τ) becomes a very
slow process at low T because of the temperature-dependent
diffusion coefficient D.

Let us briefly discuss, for example, the case of υ3 in
figure 2. The temperature cycling leads to the 〈Cp〉 curve—the
evolution path 01234560. Hereby, one distinguishes

T, K
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Figure 3. The influence of sizes N0 on hysteresis loops (for the
same rate υ = υ2 and the different N0: N0 = 1000, N0 = 3000).
Solid lines characterize the equilibrium values 〈Ceq

p 〉 at N0 =1000
and N0 = 3000, respectively.

012—supersaturated single-phase state (parent phase) of the
nanopowder (see also figure 1),

23—phase transition from the single-phase state at point 2 to
a two-phase state (parent phase + new phase 1) at point 3
(this event indicates the nucleation),

34, 45—cooled and/or superheated two-phase states (parent
phase + new phase 1)—and

56—back transition from the (parent phase + new phase 1)
state at point 5 to the parent phase state at point 6.

The slope of branch 23 depends on cooling conditions (as well
as the slope of curve 56 depending on heating conditions).
The solid line characterizes the coinciding ‘back-and-forth’
evolution of equilibrium values 〈Ceq

p 〉 found by equation (6).
It is worth noting that the shown hysteresis is very

similar to magnetic (such as paramagnetic–ferromagnetic)
phase transitions under the applied magnetic field. Such
behaviour should allow for the usage of the size-induced
hysteresis effect in a way similar to that of magnetic materials
for a variety of applications.

As one can see, the width of hysteresis loops (the effective
length between left and right branches of curve 〈Cp〉 in
intermediate temperature intervals) depends on the rate of
temperature change. Namely, the greater the rate υ, the
bigger the effective width of hysteresis loops. As the value υ

decreases, the hysteresis loop narrows. In fact, the hysteresis
clearly shows that the evolution of the size distribution function
f (N, τ)does not coincide with the evolution of the equilibrium
distribution function feq(N, τ). As soon as the temperature is
stopped the system relaxes and f (N, τ) tends to feq(N, τ),
while ρ tends to ρeq and 〈Cp〉 to 〈Ceq

p 〉.

4.2. Varying N0

Now, let us examine the influence of different values of N0

(effect of different sizes). The corresponding result, at fixed
rate υ2 and for other parameters fixed, is presented in figure 3.
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Figure 4. The evolution of volume fraction ρ during the process of
to-and-fro changes of temperature T and different low boundaries of
temperature: 1—for low limit Tmin 1 = 910 K, 2—for
Tmin 2 = 900 K, 3—for Tmin 3 = 880 K, 4—for Tmin 4 = 800 K.

We see that the bigger the system size is, the greater is the
effective width of the hysteresis loop under the same cycling
conditions. (The smaller the size of the particles is, the smaller
is the effective width of the hysteresis loop.)

It is the first time, as far as we know, that a distinct
conclusion about the tendency of hysteresis to narrow and
disappear with the decrease of the size of a system has been
obtained.

In figure 3, the left branches of hysteresis loops for
different N0 almost coincide, whereas the right branches differ
considerably. Nevertheless, simulations show that for smaller
υ the difference of left branches of loops also increases. (The
reason is that the system becomes closer to the corresponding
equilibrium; consequently, the 〈Cp〉 curve becomes closer to
the 〈Ceq

p 〉 curve.)

4.3. Influence of temperature boundaries of cycling

Consider now the evolution of ρ and 〈Cp〉 in the case of
different low boundaries of temperature cycling. Let us recall
here that, first, we decrease T starting from high values, then
stop and increase T at the same rate until the starting point is
reached. Choosing different low limiting values of temperature
cycling, one should investigate their influence on the hysteresis
loop’s shape. The result is shown in figure 4 (for the case
υ = υ2).

One can see the inertia effect of the system represented
by figure 4. There exist some temperature intervals in which
the ρ curve increases (and the 〈Cp〉 curve decreases) even after
the turn-point temperature. This is the effect of nonsteady
kinetics. Such intervals show separation—the transition from
the single-phase state to the two-phase state (figure 1). It means
that in this case the increasing of T (after the turn-point) leads
to an inverse (abnormal) process, whereas usually it must be
the collapsing of the nuclei and transformation of two-phase

particles into single-phase particles. In other words, when
the direction of temperature variation is changed, there exist
some time intervals where most of all overcritical nuclei grow,
whereas the driving force decreases.

The appearance of the hysteresis loops presented here
is related to the thermodynamic constraints, namely, the
nucleation barrier existence, nonmonotonic and asymmetric
�G(N, T ) dependence on N at any moment of time. The
�G(N, T ) shape leads to different fluctuation time values
between the forth transition (nucleation and separation), and
the back transition (from the two-phase state to the single-phase
state).

In general, both thermodynamic as well as kinetic factors
result in the existence of hysteresis. This is obvious from the
results obtained in the present work, in particular from the fact
that the changing of Q, υ or K always changes the hysteresis
loop, its width and the shape. Hereby one needs to differentiate
two cases: cases of slow rates υ (when the rate of change of
the external parameters is slower than the rate of nucleation-
growth processes) and cases of high rates υ.

4.4. Varying Q and K at slow υ

To see the influence of kinetic constraints we should establish
different values of activation energy Q for the diffusion jump
across the interphase. In this study we have used three
different activation energies Q1 = 18 kTm , Q2 = 16 kTm

and Q3 = 15 kTm and found that the smaller Q is (that is, the
bigger D is), the less is the effective width of hysteresis.

Similar reasoning is applied to the influence of σ or K . As
the value of interphase tension decreases, the hysteresis loop
narrows (for fixed rate υ2 and other parameters). In particular,
in the limit case σ = 0 and slow rate υ = υ2 (and nonzero Q,
fixed cycling conditions and other mentioned parameters) the
hysteresis disappears.

In order to separate the kinetic from the thermodynamic
size effects on the phase transition one should discuss the case
of σ = 0 for different high rates υ.

4.5. Varying υ at zero nucleation barrier height (K = 0)

In the limit case when K = 0, the nucleation barrier becomes
zero. In this case, at highυ, the existence of hysteresis may take
place mainly due to the kinetic factor Q. The corresponding
comparison is shown in figure 5.

At first, for high T , the diffusion coefficient D is big,
so that the evolution of the f (N, τ) function is also fast and
coincides with the feq(N, τ) distribution evolution. As the
T decreases, the value D decreases, too. In other words,
at low T , the hysteresis curve becomes essentially different
from the equilibrium one (‘aubergine’ or ‘pelican’ shape of
hysteresis loop)—freezing effect. Besides this, one can see
that the width of hysteresis is different for high T , low
T and intermediate values. At intermediate intervals of T
the width (length between the braches) of the hysteresis is
smaller. Let us recall here that at high T , due to depletion,
�G(N, T ) is a monotonic increasing function, whereas at low
T , �G(N, T ) has no nucleation barrier. Thus, one comes to a
conclusion that at high T the hysteresis is conditioned mainly
by a thermodynamic controlled process, whereas at low T the
hysteresis is conditioned by a kinetic controlled process.
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Figure 5. ‘Pelican’-like hysteresis loops. The demonstration of the
dominant influence of kinetic constraints on hysteresis at low
T —effect of freezing. The lengths between the branches of
hysteresis are different for low T , high T and intermediate T . The
result is presented for different rates υ at K = 0 (σ = 0),
N0 = 1000 and other mentioned parameters.

One may expect that the ‘pure’ hysteresis loop presented
here will be different from the real experimental one [17, 18].
This is caused by the existence of irregularities, defects of
any kind, particle size distribution, and diffusion between the
particles of a powder in real experiments, which will lead to a
shift of the separation and/or nucleation points, barriers etc.

4.6. Effect of scatter in particle sizes

The previous reasoning is based on the assumption that
the nanopowder consists of equal size particles. In real
experiments, this is far from true. Even if one wants to prepare
monodisperse nanopowder, still a distribution in particle sizes
exists. Experimental studies usually show that the highly
monodisperse particles in a powder have a standard deviation
of less than 5–10% [16, 19, 26]. So, one has to calculate
cases where the size distribution of nanoparticles takes place
(figure 1(b)). It is obvious that equations (3)–(10) must be
reformulated. The corresponding approach is used in the
appendix.

In fact, the existence of scatter in particle sizes may
lead either to the broadening of the hysteresis loop or to its
narrowing. The result depends on the type of size distribution:
either symmetric or not, with respect to the most probable size
N̄0 (figure 1(b)). For small deviations, the value N̄0 is almost
coincident with the mean size N0.

Here we formulate our analysis for two kinds of
distributions usually obtained under experimental conditions:
a symmetric Gaussian distribution and an asymmetric
lognormal distribution [26]. In the following, we consider
the system at the above-mentioned parameters and different
deviations δ. The result of investigation of the influence of
scattering in particles sizes is shown in figure 6.

T, K
ρ

Figure 6. Effect of scatter in particle sizes on the hysteresis loops
for Gaussian and lognormal distributions with different deviations δ
(see the appendix). Parameters are presented in the main text.

We see that small deviations (δ < 0.2) practically
do not change the shape of the hysteresis whereas the
width appears slightly increased at high T . In the case of
lognormal distribution the increase of δ leads to an increase
in the hysteresis loop due to the shape of the distribution
(figure A.1(b)). In other words, there are a small number of
very small particles and a big number of very large particles
present.

Influence of different nucleation mechanisms. The objective
of this section is to relate the value of a parameter describing
the nucleation mechanism to the shape of the hysteresis loop.
We chose the lognormal form for further investigation, as these
distributions are commonly seen in experimental systems. The
mechanism of nucleation has an influence on the nucleation
barrier height. (This contribution is partially discussed in
paragraph 4.5 for the case of equal size particles.) Let us ignore
the assumption that inside a nanoparticle only one nucleus is
formed (figure 1(c)). In the simple form, the corresponding
simulation experiments may be carried out by varying the
coefficient K . For this purpose, we divide the powder into 20
groups of different sizes (shown below) and different values of
K , where K can be only of two kinds (K1 = K = 3×10−20 J,
K2 = K/2), and investigate the transformation as a function
of T and K with other parameters and cycling conditions
fixed. Such a procedure is based on the assumptions that (i)
inside the particle not only one cluster can be formed, (ii) there
exist different nucleation mechanisms (say, homogeneous, at
K = K1, inside the particles and heterogeneous on the external
surface of particles, at K = K2). This may be of tremendous
importance, if the size of the particles increases.

Actually, we divided each of the ten previously mentioned
(see the appendix) groups Wi (i = 1, 10) into two subgroups
Wi1 and Wi2 proportionally to Wi (Wi1+Wi2 = Wi , Wi1 = βWi

and Wi2 = {1 − β}Wi). In each subgroup the value of
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T, K

ρ

Figure 7. Influence of different mechanisms of nucleation on
hysteresis loops for lognormal distribution (δ = 0.2, table A.2 of the
appendix). K1 = K = 3 × 10−20 J, K2 = K/2. Explanation is
given in the text.

coefficient K is taken as K1 or K2, respectively. Under the
chosen conditions, the coefficient β indicates what part of
the particles undergoes homogeneous nucleation (figure 1(c)).
Then, choosing the different β , K1 and K2, one needs to
investigate their influence on the hysteresis. The result is
shown in figure 7. Hereby the set of parameters is, again, the
above-mentioned one with the additional β1 = 1, β2 = 0.75,
β3 = 0.5, β4 = 0.25 and β5 = 0.

We see that the shape of hysteresis essentially depends on
the value β (two-petal-shaped hysteresis for 0 < β < 1). The
changing of β leads to crossover from petal-shaped hysteresis
at β = 1 with one width to another petal-shaped hysteresis
at β = 0 with a different width (via double-petal-shaped
hysteresis).

5. Summary and concluding remarks

The kinetics of nucleation–growth and separation processes in
a nanopowder under the external temperature field is presented.
The model has allowed us to make several distinct conclusions,
clarifying the specific feature of phase separation phenomenon
in nanovolumes.

Based on our numerical studies, we conclude that for the
fixed conditions of temperature cycling one should observe
hysteresis behaviour. Such hysteresis is conditioned by the
finite size and depletion effects and is shown on the basis of
the kinetic equation approach.

The model shows that the width of the hysteresis loop
depends on

(i) thermodynamic constraints (N0, K , δ, β) at the fixed rate
of temperature changes (dT/dτ) and other parameters;

(ii) kinetic constraints (Q).

In particular, as

(a) the size of a system,

(b) the rate of temperature changes,
(c) the interphase tension,
(d) the energy barrier for diffusion,

decrease, the hysteresis loop narrows, showing a tendency to
disappearance.

Besides this, the shape of hysteresis appreciably depends
on the nucleation mechanisms (β). This becomes apparent
particularly in the case of large scatter of particle sizes [19]. In
the case of lognormal distribution the scatter in particle sizes
leads to increase of the hysteresis width.

The given approach allows us to distinguish the influence
of thermodynamic constraints on hysteresis (related to the
Gibbs free energy dependence on size and nucleation barrier)
from the influence of kinetic constraints on hysteresis (related
to the activation energy for the diffusion across the parent
phase–nucleus interface). At high T the hysteresis is related
to a thermodynamic controlled process, whereas at low T the
hysteresis is related to a kinetic controlled process.

In the present model we have used simplifications, some of
which have been discussed above. For example, the structural
transitions without diffusion redistribution (polymorphic
transitions) have been neglected. Such transitions between
different crystal modifications can be important for first order
phase transitions in nanovolumes [16, 17]. The corresponding
analysis will be presented elsewhere.

Also, so-called bulk metallic glasses [27, 28] often
devitrify with a very high nucleation rate yielding, in a
first crystallization stage, a dispersion of nanocrystals in
the amorphous matrix [29]. This means that precipitation
develops in nanometric volumes, which can be realized in
nanometric spherical regions (of radius R) around nucleation
sites. One should expect the similar hysteresis behaviour in
bulk metallic glasses due to the depletion and the size effects
shown in present paper. We suppose that in the case of
multidefect alloy on equidistant heterogeneous nucleation sites
one should expect the possibility of spontaneous transition in
the temperature region confined within the up and down values
(depending on the size of the nucleation–growth region). The
corresponding analysis will be made elsewhere.

Another intriguing extension should involve the cases
of (i) competitive formation in the nanoparticle of two
and/or more phases with different stoichiometries and (ii)
multicomponent systems. The model introduced may also be
useful in the analysis of other phase transitions in small systems
(nanoporous materials) and is closely related to present-day
problems. For example, as follows from our results, one
can use the size-induced hysteresis behaviour for computer
disk recording where the phase transition mentioned here
(nonmagnetic) occurs during the temperature cycling.
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Appendix. Effect of scatter in particle sizes

Here we present an analysis of the thermodynamics and
kinetics of transition phenomena in a nanopowder, taking into
account the possible size distribution of the nanoparticles.
From this, it is seen that the effect of distribution on particle
sizes may change the picture of collective formation of the new
phase. Consequently, the change of Gibbs potential (4), instead
of a function of a nucleus size, becomes then a functional of
the distribution of sizes N0.

Let us introduce the value N̄0 as the most probable size of
the nanoparticles (nearly equal mean sizes) of the nanopowder
and δ as the standard deviation (δ < 1) of size distribution
function φ(N0|δ) (here, the number of particles consisting of
N0 atoms). In the case of equal size particles N̄0 = N0. In the
following, we treat the different values of δ as the criterion of
the different scatter in sizes of particles.

We have formulated our analysis for the distribution
function φ(N0|δ) with the different δ of size distribution in
the analytical coherent scheme (A.1) as well as in the discrete
approach (A.2). Further, we present the second mode as
approximate to the numerical analysis developed above as well
as to experimental analysis [18, 19, 26].

Continuous Gaussian and lognormal distributions,
respectively,

φ1(N0|δ) = W√
2πδ N̄0

exp

{
− (N0 − N̄0)

2

2δ2 N̄ 2
0

}
,

φ2(N0|δ) = W√
2πδN0

exp
{
− [ln(N0) − ln(N̄0) − δ2]2

2δ2

}
.

(A.1)

For the second discrete mode we divided the total number
of particles W into ten groups Wi of different sizes N0i (i =
1, 10) each. Such a procedure is quite sufficient to describe
the small deviations δ. Discrete distributions (and groups) are
expressed by using the mass conservation:

W =
10∑

i=1

Wi , N0W =
10∑

i=1

N0i Wi . (A.2)

For example, a Gaussian distribution with δ = 0.2 and
N̄0 = 1000 is presented in table A.1.

In a similar manner, the discrete lognormal distribution is
given in table A.2.

Thus, the different values N0i and the corresponding
groups Wi form the discrete distributions (A.2). For further
illustration, we present figure A.1 (see also qualitative
figures 1(b) and (c)).

Under the chosen conditions, the change of Gibbs free
energy �G(N, T ) becomes a function of sizes N0i as well:

�G(N, N0i , T ) = �g1(T )
N

C1
+ �g0(T , Cp)

×
{

N0i − N

C1

}
− �g0(T , C0)N0i + K

{
N

C1

} 2
3

. (A.3)

N0

N0

(a)

(b)

Figure A.1. The almost symmetric Gaussian distribution (a) and the
asymmetric lognormal distribution (b) of particles in a nanopowder
(standard deviation δ = 0.2).

The conservation law (3) must be modified as C0 N0i =
C1 N1 + Cp Np.

Furthermore, similar reasoning is applied to the
equilibrium distribution function of the given i -group:

feq,i(N, N0i , T ) = Wi∑Nmax(i)
N=Nmin

exp{−�G(N,N0i ,T )

kT }
× exp

{
−�G(N, N0i , T )

kT

}
. (A.4)

Hereby the upper limit of the sum in (A.4) is given by
Nmax(i) = C0 N0i/C1.

The average equilibrium distribution function is deter-
mined by the formula

f̄eq (N, T ) =
∑10

i=1 feq,i (N, N0i , T )

W
.
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Table A.1. Discrete distribution coinciding with the Gaussian distribution (A.1), where δ = 0.2 and N̄0 = 1000.

i 1 2 3 4 5 6 7 8 9 10

Wi/W 0.002 32 0.015 30 0.062 88 0.161 22 0.258 12 0.258 18 0.161 33 0.062 95 0.015 32 0.002 32
N0i 393 528 663 798 932 1067 1201 1336 1471 1606

Table A.2. Discrete distribution coinciding with the lognormal distribution (A.1) with δ = 0.2 and N̄0 = 1000.

i 1 2 3 4 5 6 7 8 9 10

Wi/W 0.009 10 0.074 76 0.202 98 0.268 59 0.219 65 0.129 20 0.060 40 0.024 00 0.008 50 0.002 77
N0i 611 737 866 999 1135 1272 1410 1548 1687 1826

Combining (A.2)–(A.4) and the definition (6), we obtain
corresponding mean equilibrium values:

〈Ceq
p 〉 =

{ 10∑
i=1

Nmax(i)∑
N=Nmin

Cp(N, N0i ) feq,i (N, N0i , T )

×
{

N0i − N

C1

}}{ 10∑
i=1

Nmax(i)∑
N=Nmin

feq,i (N, N0i , T )

×
{

N0i − N

C1

}}−1

,

〈ρeq〉 =
∑10

i=1

∑Nmax(i)
N=Nmin

N
C1

feq,i(N, N0i , T )∑10
i=1 N0i Wi

.

(A.5)

Now it is easy to find the nonequilibrium distribution
function fi (N, τ) for each group i , at any fixed N0i . The
corresponding kinetic equation for fi (N, τ) has a form similar
to equation (7). Hereby one needs to introduce the fi (N, τ)

instead of f (N, τ) in equation (7). Also, the quantities
v+(N, τ), v−(N, τ) and �G(N, T ) must be replaced by
the corresponding values v+(N, N0i , τ), v−(N, N0i , τ) and
�G(N, N0i , T ), respectively, in equation (8). The boundary
conditions (9) can be found as

fi(Nmin, τ) = Wi −
Nmax(i)∑

N=Nmin+1

fi(N, τ),

fi(Nmax(i), τ) = 0,

fi(N, τ = 0) =
{

Wi , N = Nmin

0, N �= Nmin.

(A.6)

As mentioned above, our aim is to determine the values
of 〈Cp〉 and ρ:

〈Cp〉 =
∑10

i=1

∑Nmax(i)
N=Nmin

Cp(N, N0i ) fi (N, τ){N0i − N
C1

}∑10
i=1

∑Nmax(i)
N=Nmin

fi(N, τ){N0i − N
C1

} ,

〈ρ〉 =
∑10

i=1

∑Nmax(i)
N=Nmin

N
C1

fi (N, τ)

N0W
. (A.7)

The corresponding analysis of the influence of different
distributions and deviations δ is presented in section 4.6.
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