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Abstract
The influences of the size, thermodynamic quantities and depletion of the
parent phase on the separation thermodynamics of nanosized supersaturated
binary solid solutions are studied theoretically. A quantitative analysis of the
nucleation of one nucleus and of the decomposition in small isolated
nanoparticles is presented. It is shown that three possibilities exist: phase
separation, prohibition of decomposition, and formation of the metastable
state of the nanoalloy. The conservation of matter leads to constraints on
nucleation and growth of new phases. The case of solid–solid transition
phenomena in a nanosystem is studied for regular solutions. This model
leads to the existence of multiple equilibrium configurations for the same
sets of initial parameters.

Phase diagrams of small particles, i.e. probability-size, nucleation
barrier-solubility, temperature-composition, are plotted within a regular
solution model.

1. Introduction

Particles with a diameter in the range of 1–100 nm are in an
intermediate state between the solid state and the molecular
state. When the number of atoms in the particle is in the
thousand range or above, the properties evolve gradually
from the molecular state to the solid state. Such particles
are characterized by the fact that the ratio of the number of
surface to volume atoms is not small. It is then obvious that
the effects of the surface on the cohesive properties of the
particle cannot be neglected. In the case of elemental particles,
it is well established experimentally that, in the nanometre
range, the melting temperature, Tm, decreases with decreasing
radius, R [1]. When one extrapolates this simple argument to
compound materials, one concludes that their phase diagram
might differ from that of bulk material. A further argument is
that segregation is known to occur at the surface of solids and
liquids [2, 3].

Nanoparticles are currently the subject of much
attention [4, 5]. They are of fundamental and applied
interest, since they are seen in many experimental situations.
They are mainly studied in the framework of solid state or
technological works, like vacuum evaporation, heterogeneous
catalysis, synthesis of very fine powders, nanostructures,

nanoelectronics, etc. Nanoparticles are also seen embedded
in structures, like so-called composite materials or clusters of
implanted materials irradiated by particles arising from nuclear
reactors. They would also be of interest in other fields, like
astrophysics, since nanoparticles are probably present in dust
in free space. When the size of particles decreases down to
the nanometre range, new properties arise, due to size and
quantum effects [4–9]. Recent advances in the synthesis and
the characterization of size-selected particles in the nanometre
range are such that it becomes possible to investigate their
physical and chemical properties [10]. Despite this interest,
the phase diagrams of nanostructures and their peculiarities
are far from being understood.

For inorganic materials, it is known that the melting
temperature, Tm, decreases linearly with R−1. This
dependence is a function of the values of the surface tensions
of the liquid and the crystal. Since the theoretical work
of Pawlow [11] in 1909, various models have been devised
to describe the variation of the melting temperature with
the radius of the particle [12–17]. When the particle is
not spherical (like metals embedded in polymers or other
materials), it has been argued that the melting point depression
might be smaller or larger than for a spherical particle,
depending on its shape [18, 19]. It has also been argued
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that this depends on the chemical environment of the particle,
via the surface tensions [20]. This has been demonstrated
experimentally for the case of lead particles in pure and
contaminated atmospheres [21], of In particles embedded in
Al matrix [22], and others.

The phase diagram is also involved in the deposition
of particles on substrates. Yeadon et al [23] observed the
formation of heteroepitaxial interfacial layers between silver
nanoparticles and a single crystal copper surface. Edelstein
et al [24] showed that the structure and surface composition of
Cu–Co nanocrystals vary.

Nanoparticles are not always uniform. In many
circumstances, they consist of one core phase, surrounded by
another phase, making the shell of the particle. This is the
case for elemental particles surrounded by their oxide [21],
metal core in another metal shell [25], etc. It is also observed
that some otherwise metastable phases are stable when they
are surrounded by another shell [26]. Moreover, the kinetics
of the synthesis of alloys is far from being understood. In
some circumstances, core–shell structures seem to appear
spontaneously [25], while alloying occurs for other alloys [27].

Since very different situations exist, and due to the
importance of the phase diagram in current and future
applications of nanoparticles, the theoretical study of the phase
diagrams of nanosystems is of great importance.

When dealing with nanoparticles, it is necessary to specify
the size range under discussion. Indeed, in the literature, the
term ‘nanoparticle’ is used for particles having sizes from a
few atoms up to clusters, in the 100 nm range. The behaviour
of these nanoparticles are different. When the particles contain
a few hundred atoms, their shapes are often well defined
polyhedra [28, and references therein]. Here, we treat cases
where the thermodynamical description remains valid. This
implies that:

(1) the overall radius of the nanoparticle is relatively large
(R � 2 nm) [14];

(2) the radii of the core and the shell are also relatively large;
(3) the surface of the core is characterized by a single value

of the surface tension. This condition is met when the
particle is either ‘rounded’ or, in contrast, presents the
shape of a regular polyhedron with one kind of facet [19].
The difference between the surface tension and specific
surface free energy is neglected;

(4) the temperature, T , is an appropriate parameter to describe
the ‘state’ of the particle. The usual definition of
temperature is related to the average energy of a system
of particles. This definition is for a system in equilibrium
and works even for nanoscale systems [29]. It is then valid
for the study of nanoparticles in thermal equilibrium.

The size-dependence of the phase diagrams has been
previously studied for a few cases. Experimental results on
the effect of size on phase transformations in alloys have been
obtained in a few works [30]. It is shown experimentally that
the ‘equilibrium’ phase diagram of the particle differs from
that of the bulk material. In theoretical investigations based
on the thermodynamical approach, the lens-shaped solidus–
liquidus curves are shifted to lower temperature when R
decreases [9, 31–33]. A similar behaviour is expected for

other phase transformations. In the following, the term ‘phase
diagram’ refers to the size-modified one.

When the temperature is changed, phase transitions may
take place. The first-order phase transformations generally
start from so-called nuclei or clusters of a new phase.
Nowadays techniques based on cluster nucleation and growth
mechanisms are used for the production of nanocrystals,
thin films, coating, nanoelectronics, quantum dots, etc [10].
Hence the nucleation theory has to be adapted to the case of
nanoparticles as well [34].

In the usual treatment of nucleation, it is assumed that the
reservoir of matter is very large, so that there is no problem
of matter supply during nucleation. In nanosystems, such
transformation should start from nucleation, but the amount
of one of the elemental constituents may be not sufficient for
the synthesis of the critical nucleus. In a finite system, due
to the limited matter reservoir, it has been shown theoretically
that the nucleation process might differ from the usual bulk
case [35–38].

In previous works [39, 40], it has been assumed that the
effective ‘supply region’ (which leads to the Gibbs free energy
of a system) is described by a two-dimensional function of
the concentrations in the depleted parent phase (or in the
new phase) and of the new phase nucleus sizes. The present
work is aimed at the study of the nucleation process, by
taking into account the depletion effect. In particular, we
study theoretically the mechanisms of phase separation in a
solid nanosystem and describe the fundamental differences
between the phase diagrams for bulk and nanomaterials, related
to the non-negligible depletion of nanoparticles even at the
nucleation stage.

In section 2, the basic equations for the thermodynamics
of melting in small solid particles are first given. In section 3
we introduce a thermodynamic model of phase separation in
nanoparticles and go over to the problem of how depletion
effects can be taken into account in the case of a nanosystem.
Section 4 is devoted to the analysis of the influence of size
and depletion on the thermodynamics of separation and phase
diagrams of regular solutions. The concluding remarks are
presented in section 5. In the appendix we present the rule of
parallel tangents construction for the extreme points of a phase
transition.

2. Thermodynamic model of melting

2.1. Total energy of the nanoparticle

The reasoning is based on the calculation of the temperature
variation of the isobaric free energy of the involved phases,
G(T ). Let N be the number of atoms in the particle. At a
fixed temperature T , the total Gibbs free energy for a particle
of N atoms is given by

NG = NG∞ + f N 2/3σ, (1)

where f is a geometrical factor depending on the shape of the
particle, σ is the surface tension related to one atom (i.e. the
surface tension divided by the number of surface atoms). The
term f N 2/3 is equal to the number of surface atoms. For
most inorganic materials, σ remains nearly constant when T
varies [41]. G and G∞ are the particle and the bulk energies
per atom, respectively.

Let us now apply equation (1) to binary mixtures.
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2.2. Binary mixtures

When two elements are mixed, the Gibbs free energy density
(per atom) of a binary mechanical mixture is given by [42]

gm = C1h1 + C2h2 − T (C1s1 + C2s2), (2)

where C1 and C2 are the atomic fractions of elements 1 and
2, respectively; hi and si are the corresponding enthalpy and
entropy, respectively. The mixing causes an increase of the
entropy via the configurational entropy of mixing �sm:

�sm = −k(C1 ln C1 + C2 ln C2). (3)

Here k is the Boltzmann constant.
If the interactions between atoms 1 and 2 are essentially

the same as in the pure components, the solution is called ideal,
and the Gibbs free energy density gid is given by

gid = gm − T �sm, (4)

gid = C1µ1 + C2µ2. (5)

Hereby the chemical potentials of components µi (i = 1, 2)
are

µi = hi − T si − kT ln Ci . (6)

Let us further introduce the effects of the surfaces
and consider the case of spherical particles. Since the
configurational entropy of mixing is dictated by the overall
number of atoms 1 and 2 in the system, the surface adds no
term to �sm. Hence, only the hi are modified by the surface,
via the surface tensions σi . If one assumes, in a first approach,
that there is no segregation, the Gibbs free energy density of a
binary particle is given by (for ideal solutions)

gpart = gid + C1gsurf ,1 + C2gsurf ,2, (7)

gpart = C1µpart,1 + C2µpart,2, (8)

µpart,i = µi + gsurf,i . (9)

Let us assume that the total number of atoms in the particle
is equal to N (equation (1)). Let now C1 = C and C2 = (1−C)

be the relative concentrations of atoms 1 and 2, respectively.
Then

Ngpart = C(Nµ1+ f N 2/3σ1)+(1−C)(Nµ2+ f N 2/3σ2). (10)

A little algebra leads to

Ngpart = Ngid + f N 2/3�(C), (11)

�(C) = Cσ1 + (1 − C)σ2. (12)

These equations show that, as expected, the energy of the
particle is always larger than that of the bulk material.

Let us apply the equations to inorganic materials. In
these cases, it is known that the surface tensions vary only
slightly with temperature, T . When one assumes that the σi

are independent of T , equations (11) and (12) show that, at
fixed C, the energy of the particle is larger than that of the bulk
by a quantity independent of T .

2.3. The melting criterion

Let us now look at the melting of the binary nanosystem. One
has to consider the energy of the liquid phase, G l(T ), relative
to that of the crystalline phase, Gs(T ). Since, near the melting
temperature Tm, we are well above the Debye temperature of
the solid, the specific heat is approximately constant. Hence,
for the elements, one has [43]

(G l − Gs)∞ = D − K T , (13)

where D and K are constants for a given material. The
subscript ∞ states that we are dealing with very large
materials, i.e. with R much larger than the interatomic distance.
The subscripts s and l refer to the solid and liquid phases
respectively. In equation (13), (D/K ) is the bulk melting
temperature, and D is the latent heat of fusion.

By taking into account the roles of the solid and the liquid
phases into equation (11), one obtains the change of the Gibbs
free energy (1) for a binary particle of N atoms during the
process of melting:

N(gpart,s − gpart,l) = N(gid,s − gid,l)

+ f N 2/3(�s(C) − �l(C)). (14)

Introducing equation (13) into (14), a little algebra leads to

N(gpart,l − gpart,s) = N{C(D1 − K1T )

+ (1 − C)(D2 − K2T )} + f N 2/3{C(σ1,l − σ1,s)

+ (1 − C)(σ2,l − σ2,s)}. (15)

N(gpart,l − gpart,s) = C{N(gpart,l − gpart,s)1}
+ (1 − C){N(gpart,l − gpart,s)2}. (16)

This last equation is important, since it indicates that, for
‘ideal solutions’, the energy difference between the liquid and
solid phases of a particle of binary system is the weighted
average sum of the corresponding energy of the elements.

For elemental materials (as well as for a pure monatomic
substance), the melting point (melting criterion) is calculated
from the previous equations, by taking N(gpart,l − gpart,s) = 0
(and by taking C = 0 or 1 and N(gpart,l − gpart,s) = 0 for a
monatomic nanoparticle). One then obtains

Tm = Tm,∞ + f (σl − σs)/(K N 1/3) = Tm,∞{1 − α/(2R)},
(17)

where Tm,∞ is the bulk melting temperature of the material.
The term ( f/N 1/3) is directly proportional to the ratio of
surface to volume atoms. For inorganic materials, α is positive,
between 0.4 and 3.3 nm [14].

3. Thermodynamic model of phase separation:
solid–solid first-order phase transition

The previous reasoning is based on the assumption that there
is no phase separation and segregation, i.e. the phases remain
intimately mixed. In the nanoparticles, this is far from being
justified. So, one has to consider the cases where phase
separation takes place, like by obtaining a core–shell structure.
In nanoparticles, it is also obvious that the quantity of matter is
finite. Hence one has also to take into account the fact that all
stoichiometries are not available, due to the above-mentioned
finite quantity of matter.
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Figure 1. Representation of a particle of concentration C0 before
transformation (a) and the same particle after nucleation in different
configurations of ‘old’ and ‘new’ phases ((b)–(d)):
Cp(r)—concentration of parent phase, Cn—concentration of
new-born phase, r—nucleus size (b) and radius of parent phase (c),
R and R′—radii of nanometric isolated particle before nucleation
and after, respectively, Snp—surface area between the nucleus and
parent phase, S—external surface area of new phase in the case of
heterogeneous nucleation at interface boundary (d).

3.1. Geometry of nanoparticle and separation

Let us assume that a small isolated initially supersaturated
particle of a given alloy is quenched into the two-phase region.
Then a phase transition from the single-phase state to a two-
phase one takes place. A single nucleus of a new phase forms
inside the particle (figure 1).

Phase separation might lead to either the formation of a
core–shell structure (as studied here) or to the disintegration
into two new nanoparticles. The condition to obtain the core–
shell structure is that the two phases wet each other. In the
following, the starting phase is called the ‘parent’ phase.

Let us look at the evolution of the surface energy when
the core–shell structure appears. The initial surface energy of
the particle is equal to

A0 = 4π R2σp,

where R is the radius of the particle before nucleation, and σp

is the surface tension of the free parent phase (figure 1(a)).
After nucleation, three different situations may be

encountered. In the first case (see figure 1(b)), the parent phase
is in the shell while the new-born phase (nucleus) is in the core
of the particle. In this case, the total surface energy is given by

A1 = 4π{(R′)2σp + r 2σnp},

where R′ is the external radius of the particle, r is the radius
of the core material (r � 0, r < R, r < R′), and σnp is the
specific Gibbs free energy per unit area (interphase tension)
of the parent phase–nucleus interface. R′ may differ from R
when there is a difference in atomic volumes of components
in the parent and new phases.

In the second case (see figure 1(c)), the parent phase is in
the core while the new phase is in the shell of the particle. In
this case, the total surface energy is given by

A2 = 4π{(R′)2σn + r 2σnp}.

Hereby σn is the surface tension of the free new phase, and r
is the radius of the parent phase.

In the third case of heterogeneous nucleation at an external
interface boundary (figure 1(d)), the two phases do not show
the core–shell structure. After nucleation the corresponding
value of the surface energy will be

A3 = 4π(R′)2σp + (σn − σp)S + Snpσnp.

Snp is the surface area between the nucleus and the parent phase,
and S is the external surface area of the new phase.

When the atomic densities are the same (so that R′ = R)
the differences in surface energies between the initial single-
phase state and the separated two-phase states are given by

�A1 = 4πr 2σnp,

�A2 = 4π{(σn − σp)R2 + r 2σnp},

�A3 = (σn − σp)S + σnpSnp.

When σn = σp, the change of surface energy may be written

�A = σnpSnp,

where Snp = 4πr 2 for the cases (b) and (c) in figure 1.
The ‘thermodynamic and kinetic decoding’ of the transfor-

mations (a) → (c), (a) → (b), (a) → (d), (a) → (d) → (c),
and so on will be more fully discussed in a future work. Here,
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Table 1. Parameters of the binary nanosystem used in the paper.

σ (J m−2) ϕAA, ϕBB (J) ϕAB (J) n (m−3) ωB (m3) R (m)
Z (σ ≡ σnp) (ϕBB = ϕAA) (ϕAB = ϕBA) (n = n1) (ωB = ωA) (R = R′) Tc (K)

8 0.15 −8 × 10−21 −6 × 10−21 7 × 1028 1.43 × 10−29 2 × 10−8 580

T=580K

T=450K

C
Cp CnC0

-5.6

-5.2

-4.8

-4.4

-4

-3.6
∆g(C)/kT

0 0.4 0.8

Figure 2. Dependences of Gibbs free energy density (per atom) on
composition for different temperatures; C0—initial composition.
Mole fractions Cn and Cp are linked by the parallel tangents rule;
they depend on the nucleus radius r and provide the minimization of
�G (energy of the system) with respect to concentrations for every
given r , R. For the case of full decomposition in the bulk system
these mole fractions Cn, Cp tend to the values determined by the
common tangent rule corresponding to stable equilibrium.
Temperatures are shown in the plot. Parameters are given in table 1.

only a general thermodynamic consideration of the (a) → (b)

transition is given.
In the following, we restrict the discussion to binary

systems (containing A and B components) and consider the
formation of a two-phase system, where the new phase has
a non-zero driving force of transformation. Let us choose
the thermodynamic models for the new and parent phases.
The Gibbs energy (per atom) of the parent phase and of the
new phase are assumed to be described by the regular solution
theory (figure 2).

3.2. The regular solution

In the case of regular solutions, the Gibbs free energy (per
atom) of formation of the new phase is given by (see, for
instance [44, 45])

�g(C) = 0.5Z{CϕBB + (1 − C)ϕAA − 2EmixC(1 − C)}
+ kT {C ln C + (1 − C) ln(1 − C)}
+ p{(1 − C)ωA + CωB}. (18)

In this equation, ϕAA, ϕBB, and ϕAB are the interatomic
interaction (pair) potentials between A atoms, B atoms, and
A and B atoms, respectively. Emix = {0.5(ϕBB + ϕAA) − ϕAB}
is the mixing energy, Z is the coordination number, p is the
pressure, and ωA and ωB are the atomic volumes of A and B

atoms respectively. C is the relative concentration of B atoms
in the system (atomic fraction of species B). Under standard
conditions, (p = 1 atm) the last term in expression (18) may
be neglected.

In the following, for simplicity, we assume that ϕAA =
ϕBB. The parameters used in the theoretical calculations
are given in table 1. We shall not discuss the results and
conclusions based on the nonsymmetric approximation of the
pair potentials and other values of parameters of the system
since they are basically similar. The total number of atoms in
the given particle is about 2 × 106, so the classical nucleation
theory is appropriate.

When the stoichiometry of the new phase differs from that
of the parent phase, the change of composition will lead to the
depletion in the parent phase.

3.3. Depletion

Let us consider the binary nanoparticle to be isolated. Let us
also assume that there is no constraint on lattice rearrangement.
Then the process of nucleation of the new phase in the
initially homogeneous system is related to the concentration
fluctuations. Let C0 be the mole fraction of species B in the
particle before nucleation. Cn is the mole fraction of species
B in the new phase (the new phase nucleus will have another
concentration than the parent phase, Cn �= C0), and n and n1 are
the atomic densities in the parent and new phases, respectively.

Let us first examine the consequences of matter
conservation inside the nanoparticle. The minimal volume V ∗
of the nanoparticle for which the new phase embryo of critical
volume V ∗

n can appear may be found from the conditions for
matter conservation:

C0nV ∗ = Cnn1V ∗
n .

When the embryo of the new phase appears, it requires
that atoms B be taken from the parent phase. A little algebra
leads to the estimation for the radius R of the particle:

R > R∗ =
(

Cnn1

C0n

)1/3

rcr,

where rcr is the radius of the critical nucleus of the new phase.
The nucleation is forbidden when R < R∗. In the case of a
system with limited volume, this condition is very important
(especially for the case of large differences in compositions of
the parent and new phases) even at the nucleation stage.

If the depleted parent phase is in the shell after nucleation
(figure 1(b)), then the mole fractions Cn and Cp of species B
in the new and parent phases respectively are interrelated by
the formula

Cp = C0 +
n1r 3

nR3 − n1r 3
(C0 − Cn), (19)

where the particle is spherical.
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3.4. Energy of the transition

Under these conditions, the Gibbs free energy �G for the
nucleation of the new phase of volume Vn (radius r ) and
decomposition can be written as

�G(Vn, Cn) = n1Vn�g(Cn) + n(V ′ − Vn)�g(Cp)

− nV0�g(C0) + 4πr 2σ, (20)

where σ (σnp) is the interphase tension, and V ′ = V0 + Vn(n −
n1)/n is the volume of the separating particle after nucleation
and/or separation. As pointed out previously, the change of
surface energy may be written as �A = σnpSnp (Snp = 4πr 2).
It is also assumed that the surface tension σp of the external
surface does not change upon phase separation. Equation (20)
implies that the Gibbs free energy change of the system is a
function of two variables: Cn and r .

3.5. Minimization procedure

Let us now look at the equilibrium phase transformation of
the nanoparticle. It is known from thermodynamics that
the equilibrium is related to the concavity (or convexity) of
thermodynamic potentials [44]. There are two equivalent ways
to investigate this.

The first one is the usual method of geometrical
thermodynamics [44, 46]. According to it, one plots the Gibbs
free energy density as a function of composition, taking into
account the additional surface energies related to the nucleus
surface and the particle surface. Then one discusses the
conditions for minimal energy of a given system.

The second way (used here) is to consider the general
thermodynamic equilibrium conditions for the function
�G(r, Cn) and write the equations of the first and second
derivatives of �G(r, Cn) with respect to the variables.

To determine the extreme points of phase transition, one
has to solve the following equations:

∂�G(r, Cn)/∂Cn = 0 (21a)

∂�G(r, Cn)/∂r = 0. (21b)

The solution of the second equation of the system (21)
gives the radii of the phases in the equilibrium states, at
constant T , C0 and R. The solution of the first one leads to the
rule of parallel tangents for extreme points of transformation,
at constant r , R and T (see the appendix).

The driving force for transformation is generally
determined by assuming that the concentration of the parent
phase is constant. As shown in the appendix, this is far
from being true for nanoparticles. In the case of limited
volume, one must take the depletion effect into account. The
general peculiarity of nucleation is that the stoichiometry of
the nucleus coincides neither with the initial stoichiometry of
the parent phase nor with the stoichiometry of the new phase
after transformation nor with the stoichiometry of the parent
phase after separation. One usually mistakenly uses the rule of
common tangent. In the appendix, a theorem for the extreme
points of a phase transformation is given. According to this
theorem, the optimal concentration of the parent phase after
separation and the optimal concentration of the new-born phase
after transformation are determined by the parallel tangents
rule (not common) in the concentration dependences of the

Gibbs potential density �g(C), when depletion of the parent
phase is taken into account [39]. This is also shown in figure 2.
After some algebra in the appendix the relation (A.2) obtained
for the optimal concentration of the depleted parent phase and
the optimal concentration of the ‘new’ phase is the following:

4Emix(C
opt
n − Copt

p ) = kT ln

{
Copt

p (1 − Copt
n )

Copt
n (1 − Copt

p )

}
. (22)

Substituting Copt
p = Copt

p (r) from (A.3) in this expression
and solving with respect to Copt

n , one obtains the optimal mole
fraction in the new phase Copt

n as a function of one ‘coordinate’
r at fixed R and the other parameters of the system (Emix < 0).
The corresponding optimal solution for the mole fraction in the
parent phase Copt

p is determined from equation (A.3). In the
following, for simplicity reasons, we write Cn and Cp instead of
Copt

n and Copt
p , bearing in mind the equilibrium concentrations

found by the parallel tangent rule (22).
After substituting Cn and Cp into expression (20), one

obtains the Gibbs free energy �G of the system as a function
of one variable, the radius of the new phase, at constant R
and T . Equation (20) allows us to find the critical size of
the nucleus and other critical parameters of the system. The
condition (21b) for equation (20) may be rewritten as

n4πr2{γ �g(Cn) − �g(Cp)}
+

4π

3
n((R′)3 − r 3)

∂ �g(C)

∂C

∣∣∣∣
Cp

∂Cp

∂r
+ 8πrσ = 0.

Here σ is taken independent of size r , and γ = n1/n.
The last equation and the conservation of the number of

atoms (19) or (A.3) determine the radius of the critical nucleus
and the radius of the equilibrium (metastable or stable) two-
phase configuration of the system:

r0 = − 2σ

n
{
γ�g(Cn) − �g(Cp) − (Cn − C0)

∂�g(C)

∂C

∣∣
Cp

γ R3

R3−γ r3
0

} .

(23)
In the following the atomic volumes of the constituents are

assumed to be the same for the ‘old’ and ‘new’ phases (n1 = n
and ωA = ωB, γ = 1).

In the general case, equation (23) is an equation of the
fourth degree with respect to size r . Depending on the
parameters the equation has either two solutions, or one
solution, or has zero solution. (We neglect the r = 0
solution.) In the first case �G(r) presents one maximum
(critical nucleus) and one minimum (separated two-phase
state: new phase plus depleted parent phase). In the second
one the maximum and minimum coincide (∂�G(r)/∂r =
∂2�G(r)/∂r2 = 0 for r > 0). In the last case, nucleation
is impossible; the �G(r) dependence on r is a monotonic
increasing function.

Further, for the stability investigations of the �G(r, Cn)

one must find the Jacobi determinant of the second partial
derivatives of �G(r, Cn). Unfortunately, the second partial
derivatives of function �G(r, Cn) with respect to Cn and
r do not give analytical solutions. So instead of this
thermodynamical investigation we can:

(i) solve the conditions (21) or (22) and (23) for the
equilibrium state of the system numerically and find the
value of the �G;
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(ii) analyse the function �G (20) and evaluate the localization
of extreme points of phase separation in the three-
dimensional space �G , r , Cn;

(iii) analyse only one line of the surface of the function �G
(�G versus Cn) in three-dimensional space along the
extreme path found by condition (21a);

(iv) analyse the summarized function �G (20) (as a line of the
surface in three-dimensional space �G , r , Cn) along the
extreme path found by condition (21b).

Here, we use this last procedure.

3.6. The probability factor

The previous discussion deals with mean values of the
parameters, as applied to a mean nanoparticle. Under
experimental conditions, one generally deals with a large
number of particles, so that a statistical approach of phase
diagrams is required. The nucleation process is also inherently
statistical. The crossover of the nucleation barrier is a
stochastic process, which can be treated by considering the
fluctuations in the system. It is therefore mandatory to study
the phase separation of nanoparticles by a statistical approach.

Under equilibrium conditions, the probability of
concentration fluctuation is given by the theory of
thermodynamic fluctuations. The probability factor f (r) is
given by the Boltzmann formalism:

f (r) = f0 exp

(−�G(r)

kT

)

= 1∑r=rmax
r=0 exp

(−�G(r)
kT

) exp

(−�G(r)

kT

)
. (24)

Here f (r)/ f0 is the fluctuation probability function for
particles made of nuclei of size r , 1/ f0 is the statistical sum,
and rmax is the maximal possible size of the nucleus when the
parent phase is fully depleted by species B: Cp = 0.

Let us recall that�G(r) and f (r) are functions of T , R and
C0. In the following, we consider the influences on the energy
barriers, fluctuation probability and phase transformation of:

(i) changes of temperature T at fixed other parameters;
(ii) changes of sizes R at fixed other parameters;

(iii) changes of initial composition C0 at fixed other
parameters.

4. Phase diagrams: separation.

4.1. Varying T

Let us look at the variations of f (r) and �G(r) with T , at fixed
C0, R and other parameters (table 1). Typical temperature-
dependent equilibrium fluctuation probabilities f (r) with sizes
r and Gibbs free energy dependence �G(r) on sizes r are
shown in figure 3 for given sets of the parameters (hereby the
rule of parallel tangents is used).

Let us start from the single-phase state at high T
(figure 1(a)) and let T decrease. During the decrease of T ,
the dependences of �G(r) and f (r)/ f0 on r change from the
monotonic curves (curves 1 in figure 3) to the nonmonotonic
curves with one minimum and one maximum for r > 0
(curves 3–5 in figure 3). One can visually compare �G(r)

and f (r)/ f0. The analysis shows that the minimum of f (r)/ f0

∆G(r)/kT
1

2

3

4

5

0

0 r

0 r

f(r) / f0

1

1

2

3

4
5

(a)

(b)

Figure 3. Qualitative dependence of the Gibbs free energy �G(r)
on size (a) and fluctuation probability f (r)/ f0 on the radius r of the
nucleus (b): (i) for different temperatures T , provided other
parameters are fixed, (ii) for different sizes R and fixed other
parameters, (iii) for different initial compositions C0 at fixed other
parameters. Explanation is presented in the main text. Case 4
represents the separation condition.

corresponds to the maximum—nucleation barrier—of �G(r)

(at the so-called critical size of the nucleus). Also, the
maximum of f (r)/ f0 corresponds to the minimum of �G(r).
As usual, the maximum of f (r)/ f0 (minimum of �G(r))
corresponds to the two-phase equilibrium state, that is to the
overcritical nucleus of the new phase and ambient parent phase
(figure 1(b)). When T decreases, the minimum of f (r) shifts
down and to the left, while the maximum moves to the right
and up (figure 3(b)).

Separation criterion. Of particular importance is the
situation where f (r)/ f0 = 1 (case 4, figure 3). This
corresponds to the separation limit, at the separation
temperature Ttr . At Ttr , f (r)/ f0 = 1, while ∂ f (r)/∂r = 0,
∂2 f (r)/∂r2 < 0, r > 0. (According to formula (24) the value
of f (r) must be smaller than unity, but the ratio f (r)/ f0 ,
which is equal to f (r)/ f0 = exp(−�G(r)

kT ), may be larger
than 1.) This criterion will be called the separation criterion
in the following. This criterion coincides with the transition
condition �G(r) = 0, ∂�G(r)/∂r = 0, ∂2�G(r)/∂r2 > 0
proposed earlier [47].
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The value of Ttr depends on the value of R of the particles
at fixed other parameters. In principle, depending on sizes and
composition, the transition temperature may vary from a few
to hundreds of kelvins.

The analysis of the distribution profile (24) and
formula (20) indicates the existence of three characteristic
facts: single-phase states (curves 1 in figure 3); two-phase
states of a nanoparticle (minimum point on curve 5 in
figure 3(a) and/or maximum point on curve 5 in figure 3(b)),
metastable states (minimum point for r > 0 on curve 3 in
figure 3(a) and/or maximum point on curve 3 in figure 3(b)).

If one starts from a two-phase state at low T (figure 1(b))
and increases T , the behaviour is the opposite. During the
increase of T , the maximum of the f (r)/ f0 curve moves to
the left and down and the minimum moves to the right and up
(figure 3(b)). At the cross-point the maximum and minimum
coincide. (For example, for C0 = 0.15 and the above chosen
set of parameters the condition ∂ f (r)/∂r = ∂2 f (r)/∂r 2 = 0
or ∂�G(r)/∂r = ∂2�G(r)/∂r2 = 0 for r > 0 takes place at
T = 480 K.)

The general conclusion of the present model (see, for
instance, [47]) is that Ttr is a function of R and initial
compositions C0, and that it is always smaller than for bulk
material. In other words, the limited volume of the particle
constrains the fluctuations in the particle so that it allows one
to keep the alloy in the particle in a state which would be
unstable in the bulk.

Furthermore, one can obtain all possible states by
changing not only the temperature of the particle (at fixed other
parameters) but also by changing the size R of the particle
(at fixed other parameters) as well as by changing the initial
composition C0 (at fixed other parameters).

4.2. Varying R

Let us now look at the influence of R on the solubility at fixed
T , C0 and other parameters. As R increases, the maximum
of the fluctuation probability (24) appears and shifts towards
the right and up, and the minimum of f (r) shifts down and
to the left (figure 3(b)). By means of the same reasoning as
above, one deduces the existence of a separation transition
criterion at a critical size of the nanosystem Rtr . This value Rtr

is a function of the degree of supersaturation (temperature and
initial composition).

4.3. Varying C0

Let us again fix all parameters of the system and consider
the changes of initial composition C0 at fixed T and R. To
investigate this one should make the previously mentioned
thermodynamic analysis using the separation criterion for a
small particle. As pointed out previously, this is qualitatively
similar to the results of temperature or size changes discussed
earlier. As the supersaturation C0 becomes bigger the
fluctuation probability (24) has a maximum which displaces
towards big sizes (figure 3(b)). Furthermore, one can find a
very interesting peculiarity, namely the existence of ‘critical
supersaturation’ shown below.

Let us now compare the size-dependent phase diagram
with that of bulk material.

4.4. Phase diagram

Solubility limits in bulk material. As a first step, we will look
at the equilibrium compositions in the parent phase Cp,∞ ≡
Cp(R → ∞) and in the new phase Cn,∞ ≡ Cn(R → ∞),
corresponding to the full separation in the infinite bulk material
(at every fixed temperature T ). The conditions for optimal
concentration Cn,∞ and Cp,∞ and solubility limits can be found
according to the common tangent rule:

�g(Cp,∞) +
∂�g(C)

∂C

∣∣∣∣
Cp,∞

(Cn,∞ − Cp,∞) = �g(Cn,∞).

In the symmetric case (ϕBB = ϕAA, ωA = ωB):

∂�g(C)

∂C

∣∣∣∣
Cp,∞

= ∂�g(C)

∂C

∣∣∣∣
Cn,∞

= 0,

�g(Cp,∞) = �g(Cn,∞).

This leads to the transcendental equation

Z Emix(2Cp,∞ − 1) + kT ln
Cp,∞

(1 − Cp,∞)
= 0

and Cn,∞ = 1 − Cp,∞.

For our set of parameters (table 1), this transcendental
equation has temperature-dependent roots, Cp,∞ and Cn,∞.
For regular solutions, the critical temperature, Tc, at which
the separation is impossible in bulk material corresponds to
the conditions

∂�g(C)/∂C = ∂2�g(C)/∂C2 = 0,

Cn,∞ = Cp,∞ = 0.5.

In our case, Tc = 580 K. The usual cupola-shaped
separation diagram T –C for an infinite matrix is given in
figure 4.

Let us recall that the usual cupola-shaped equilibrium
diagram determines the solubility as well as the equilibrium
compositions (Cp,∞ and Cn,∞), as a result of separation by
one line. In fact, in bulk material, the solubility is equal to
the equilibrium composition Cp,∞. In the following, we will
see that, in nanosystems, the solubility does not coincide with
the equilibrium composition after separation. Moreover, one
needs to re-interpret the size-dependent separation diagram for
small particles.

Size-dependent diagram. Let us now study phase transitions
in our binary nanosystem. Let us fix R and C0, and let us
vary T until Ttr is reached. Then we change only the initial
composition C0 at fixed R and again find the new transition
temperature Ttr (hereby the rule of parallel tangents is used).
The conclusion of such a procedure is as follows.

According to the rule of parallel tangent construction and
our separation criterion for a small particle (case 4 in figure 3)
one can find the optimal composition Cp (Cp ≡ Cp(R, T )) of
the parent phase corresponding to the two-phase state condition
f (r)/ f0 = 1 (or stable �G(r) minimum). Thus, we have three
limiting points for the chosen criterion:

(1) the initial composition as the limit of solubility C∗
0 (R, T )

(further C∗
0 ) of one component in another (B in A);
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0.8

0.85

0.9

0.95

1

T/Tc, K

C0
*
C1 C2Cp,

Figure 4. Size-dependent state diagram: reduced temperature
(T/Tc)—solubility C∗

0 . Points ‘ ’ show the usual cupola-shaped
diagram of a binary system for the case of separation in an infinite
system (when C∗

0 = Cp,∞). Points ‘•’ represent the first stable
solution of equation (21b) or (23) and indicate the cupola-shaped
diagram of a small particle at fixed radius R (the line connecting the
experimental points is plotted for visualization of the cupola shape).
Points ‘+’ correspond to the second stable solution of the system of
equations (21) and continue the size-dependent phase diagram in the
high-temperature range. The parameters are in table 1.
Compositions Cp and Cn after separation are not presented in the
figure.

(2) the optimal composition of the depleted ambient parent
phase Cp after separation;

(3) the optimal composition of the new-born phase Cn as the
result of separation.

Let us note that the separation criterion in the regular
solution leads to an unexpected result, namely multiple values
for the solubility C∗

0 (and respectively multiple equilibrium
configurations of the system (figure 1(b))) at the same sets of
initial parameters. So for simplicity we restrict the comparison
with the bulk case within the concentration limits 0 < C0 <

0.5 (figure 4).
Let us consider the influence of finite sizes R on the

solubility C∗
0 change at fixed temperature T (say, T/Tc =

0.817) and cited above parameters (table 1). The solubility
C∗

0 in massive alloy is determined by point Cp,∞ = 6.4 at.%
in figure 4. In the nanoparticle, we calculate C1 = 35 at.%.
(C∗

01 ≡ C1 > Cp,∞) and C2 = 48.3 at.% (C∗
02 ≡ C2—the

result of the existence of the second solution of equations (21)–
(23), second critical solubility). This means that a massive
alloy with C0 < Cp,∞ is thermodynamically stable with
respect to separation. For chosen temperature T/Tc = 0.817
in the Cp,∞ < C0 < 0.5 interval the massive alloy is unstable,
and it will be separated into a new phase of composition
Cn,∞ = 1 − Cp,∞ = 95.6 at.% and a parent phase of
composition Cp,∞ = 6.4 at.%. At the same time, a small
particle with the same initial concentration C0 (C0 < C1 and
C0 > C2) will not be separated, but a particle with composition
C1 < C0 < C2 will be separated into a new phase and parent
phase. Hence, the decrease of the size of a system leads to the
increase of the solubility C∗

0 (figure 4).

0 0.1 0.2 0.3 0.4 0.5

C0*

6

7

8

9

10

ln(∆G*/kT)

Figure 5. Nucleation barrier (in reduced units) in separating a
particle of size R as a function of solubility in the frame of a regular
solution model. Points ‘•’ and ‘+’ indicate nucleation barriers in
the case of the first and the second stable solution of equations (21),
respectively. The linear approximation for solubility limits in the
case of the chosen set of parameters may be written as
C∗

0 ≈ {ln(�G∗/kT ) − 6.15}/7.4.

Figure 4 shows that:

(i) spinodal decomposition in the small particle is impossible,
even if we take a nanosystem at composition within the
interval ∂2�g(C)/∂C2 < 0.

(ii) there exist two stable solutions of the system of
equations (21) or (22) and (23) for high temperatures in
regular solutions (two pairs of Cp, Cn and corresponding
values r ).

More careful consideration of the nucleation barriers for
these two solutions leads to the result shown in figure 5.

Comparing figures 4 and 5, one can see that the second
solutions (points ‘+’ nearly C∗

0 ≈ 0.5) have much higher
nucleation barriers �G∗(r) than the first ones (points ‘•’).

In the framework of the classical theory of nucleation, the
nucleation rate is proportional to the probability factor f (r)

and is given by [45]

J = J0 exp{−�G∗/kT } exp{−�GD/kT }. (25)

Here J is the steady-state rate of formation of the ‘new’ phase
(thermodynamically stable with respect to the initial state), J0

is a frequency constant, �G∗ is the nucleation barrier, and
�GD is the activation energy for diffusion across the parent
phase–nucleus interface.

Let �G∗
1 be the nucleation barrier corresponding to the

separation criterion at solubility C1 (first solution C1 ≡ C∗
01),

and �G∗
2 be that concerning the case C2 (second solution

C2 ≡ C∗
02) at the same parameters (table 1).

According to (25) the process is controlled by both the
thermodynamic and the kinetic energy barriers of nucleation.
Assuming that �GD is constant, �G∗

1 � �G∗
2 implies that

J1 	 J2.

1728



Phase separation in nanoparticles

0.2 0.4 0.6 0.80.3 0.5 0.7 0.9
460

464

468

472

476

1 2

T, K

34

C

5
6

Q1Q2 Q3

Figure 6. Representation of ‘critical supersaturation’ on the
size-dependent temperature–concentration diagram of a small
particle at fixed radius R. The parameters and explanation are
presented in the main text. Results pointed by 1 and 2 are also
shown in figure 4. Point Q1 indicates the initial composition C∗

0
before nucleation, point Q2 characterizes equilibrium composition
Cp after separation, and Q3 shows the optimal mole fraction in the
new phase Cn. Q1 Q2 ≡ �C∗ ≡ C∗

0 − Cp—critical supersaturation.

Critical supersaturation. It appears from our analysis that
the limiting solubility C∗

0 in a small particle does not coincide
with the equilibrium composition Cp after separation. This
difference between the limiting mean mole fraction of compo-
nent B in initially saturated alloy (or solubility, i.e. concentra-
tion corresponding to the separation criterion) and optimal (or
equilibrium) concentration in the parent phase after separation
was earlier called a ‘critical supersaturation’ [47]. Hereby the
difference �C∗ = C∗

0 − Cp is the ‘critical supersaturation’.
The effect of ‘critical supersaturation’ means that separation
is possible only (at some fixed temperature and size) if the
supersaturation �C = C0 − Cp is larger than �C∗. If the
supersaturation �C < �C∗, then nucleation and separation
are impossible. The effect of supersaturation is presented in
the state diagram (figures 4 and 6).

As one can see from figure 6, two solutions exist. The first
solution of the separation criterion is indicated by the set of
points ‘•’ (shown by 1) for concentrations C1; points ‘�’ (set
of points shown by 3) are for the optimal concentrations Cn1;
and points ‘

�

’ (set 5) are for optimal values Cp1 . The second
solution of the separation criterion appears only at high tem-
peratures and is shown by the set of points ‘+’ (set 2) for the
concentrations C2; points ‘ ’ (set 4) are for optimal concentra-
tions Cn2; and points ‘�’ (set 6) are for the optimal values Cp2 .

It turns out from the present analysis and figure 6 that
points Q1, Q2, Q3 correspond to the lever rule for mass
conservation: (Ntot − Nn)�C∗ = Nn(Cn − C∗

0 ), where Nn

is the total number of atoms in the new phase and Ntot is the
total number of atoms in the binary system; interval Q1 Q2

corresponds to critical supersaturation �C∗.

5. Concluding remarks

The aim of the present work is to apply the concepts
of thermodynamics to nanosystems, in the case of phase
transitions.

Figure 7. Schematic shift of phase diagram for the case of the
regular solution model. The line R1 = ∞ is the usual separation
cupola for bulk material. The inverted W-shape dependence
indicates the size-dependent diagram (R2 < R1). Compositions in
the nucleus and in the parent phase after the separation of the
nanosystem are not presented here.

The thermodynamic approach of the size-dependent
melting temperature outlined here seems to provide a
physically acceptable explanation of the melting phenomenon.

It is shown that the concept of an equilibrium phase
diagram has to be revised, due to the fact that the amount of
matter is limited in nanoparticles.

When a nanoparticle separates into two different phases,
the equilibrium phase diagram is split and shifted, as compared
with that of the bulk material. It is also size dependent.
Qualitatively the shift of the phase diagram of regular solutions
is as shown in figure 7.

Furthermore, instead of one line, one obtains three lines,
namely a line of solubility C∗

0 and lines of separation Cp and
Cn. For example, figure 7 indicates only the solubility limits
but not an equilibrium state in a nanosystem. The solubility
and equilibrium compositions after separation in bulk materials
coincide (case R1 in figure 7).

In the case of a nanosystem, the composition limits of the
new and old phases are determined by the points at which the
slopes of the two free energy density curves are equal, that is
have equal (not common) tangents.

Finally, we would like to point out that the investigations
presented in sections 3 and 4 of the present paper are devoted
to the problem of a solid–solid first-order phase transition in
nanovolumes. The problem of solid–liquid transitions, based
on the similar thermodynamic method, will be discussed in a
forthcoming publication.
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Appendix. The rule of parallel tangent construction
for optimal points of a phase transition

Here we demonstrate the rule which states that in the case of
a nanosystem the boundaries of the phases are determined by
the points at which the slopes of the two free energy density
curves are equal, that is have equal (not common) tangents.

Theorem. The equilibrium concentrations Copt
n in the new

phase and in the ambient parent phase Copt
p are determined by

the rule of parallel (not common) tangents drawn from lines of
concentration dependences of Gibbs free energy densities on
concentrations for the ‘new’ and ‘old’ phases.

Proof. Let us find the equilibrium concentrations for problem
(18)–(20). Considering the possible set of concentrations Cn

in the nucleus, let us find the optimal one from the
condition (21a).

According to equation (19) one should find the
concentration in the parent phase Cp as a function of the
concentration Cn and the volume Vn at other fixed parameters.
Analysing equation (20), with regard to condition (21a), one
easily obtains the relation

n1Vn
∂�g(C)

∂C

∣∣∣∣
C=Cn

= −n(V ′ − Vn)
∂�g(C)

∂C

∣∣∣∣
C=Cp

∂Cp

∂Cn
.

(A.1)
Applying relation (19), one obtains

∂Cp

∂Cn
= − n1Vn

nV0 − n1Vn
= − n1Vn

n(V ′ − Vn)
.

Substituting the last equation into (A.1), one obtains the
rule of parallel tangent construction for optimal concentrations
in the ‘new’ phase and in the ‘old’ parent phase (see also
figure 2), which was to be proved:

∂�g(C)

∂C

∣∣∣∣
Copt

n

= ∂�g(C)

∂C

∣∣∣∣
Copt

p

. (A.2)

Then the expressions obtained for the optimal mole
fraction in the parent phase will be

Copt
p = C0nV − Copt

n n1Vn

nV − n1Vn
or

Copt
p = C0 +

n1r 3

nR3 − n1r 3
(C0 − Copt

n (r | R)).

(A.3)


�

Resumé. The rule of parallel tangent gives the optimal path
of evolution of a system. This rule is a sequence of the
thermodynamic approach when the Gibbs free energy (20)
is minimized: ∂�G/∂Cn = 0 (21a). Solving this variation
problem, an optimal depletion for fixed nucleus size is
obtained, provided by the condition ∂2�G/∂C2

n > 0.

This rule is valid for the critical nucleus as well as for
the equilibrium two-phase state (the supercritical nucleus of
optimal concentration and separated parent phase being in
the state of minimum of Gibbs free energy) because it is

determined from the extreme condition for the Gibbs free
energy change of the system.

One can show that in the extreme case of separation (not
nucleation) in the infinite matrix the equal tangents become
common and the driving force will be determined by the well
known rule of common tangent.

In the limiting case (R → ∞) the rule of parallel tangents
allows us to find the concentrations in the critical nucleus
and matrix correspondingly at once on the phase diagram
�g(C)−C. Hereby the composition of the parent phase stays
unchanged at C0.

In the general case before drawing the parallel tangents
for the critical nucleus and matrix or for the equilibrium two-
phase state (‘new’ phase plus parent phase) on the diagram
�g(C) − C one must solve equation (21b) at first and then
solve equation (21a) or (A.2).

Furthermore, the rule may be applied in a multicomponent
system as well, when a new phase is not determined by strong
stoichiometric composition, that is, there exists a solubility
interval on the diagram of Gibbs free energy density versus
concentration (�g(C) − C).

As was mentioned before, this rule is applied for the
nucleation and separation of nanoparticles in which the
composition of the new phase is a function of size.
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